目录
一、TCP和UDP简介
TCP 和 UDP 是传输层的两个协议
传输控制协议(TCP):
- TCP(传输控制协议)定义了两台计算机之间进行可靠的传输而交换的数据和确认信息的格式,以及计算机为了确保数据的正确到达而采取的措施。协议规定了TCP软件怎样识别给定计算机上的多个目的进程如何对分组重复这类差错进行恢复。协议还规定了两台计算机如何初始化一个TCP数据流传输以及如何结束这一传输。TCP最大的特点就是提供的是面向连接、可靠的字节流服务。
用户数据报协议(UDP):
- UDP(用户数据报协议)是一个简单的面向数据报的传输层协议。提供的是非面向连接的、不可靠的数据流传输。UDP不提供可靠性,也不提供报文到达确认、排序以及流量控制等功能。它只是把应用程序传给IP层的数据报发送出去,但是并不能保证它们能到达目的地。因此报文可能会丢失、重复以及乱序等。但由于UDP在传输数据报前不用在客户和服务器之间建立一个连接,且没有超时重发等机制,故而传输速度很快。
二、 UDP
1. 包头

由上图可以看出,UDP 除了端口号,基本啥都没有了。如果没有这两个端口号,数据就不知道该发给哪个应用。
2. 特点
- 沟通简单,不需要大量的数据结构,处理逻辑和包头字段
- 轻信他人。它不会建立连接,但是会监听这个地方,谁都可以传给它数据,它也可以传给任何人数据,甚至可以同时传给多个人数据。
- 愣头青,做事不懂变通。不会根据网络的情况进行拥塞控制,无论是否丢包,它该怎么发还是怎么发
3. 应用场景
- 需要资源少,网络情况稳定的内网,或者对于丢包不敏感的应用,比如 DHCP 就是基于 UDP 协议的。
- 不需要一对一沟通,建立连接,而是可以广播的应用。因为它不面向连接,所以可以做到一对多,承担广播或者多播的协议。
- 需要处理速度快,可以容忍丢包,但是即使网络拥塞,也毫不退缩,一往无前的时候
例如:
- 直播。直播对实时性的要求比较高,宁可丢包,也不要卡顿的,所以很多直播应用都基于 UDP 实现了自己的视频传输协议
- 实时游戏。游戏的特点也是实时性比较高,在这种情况下,采用自定义的可靠的 UDP 协议,自定义重传策略,能够把产生的延迟降到最低,减少网络问题对游戏造成的影响
- 物联网。一方面,物联网领域中断资源少,很可能知识个很小的嵌入式系统,而维护 TCP 协议的代价太大了;另一方面,物联网对实时性的要求也特别高。比如 Google 旗下的 Nest 简历 Thread Group,推出了物联网通信协议 Thread,就是基于 UDP 协议的
三、TCP
1. 包头

TCP 的包头内容 及代表作用 :
(1)序号:Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记。
(2)确认序号:Ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1。
(3)标志位:共6个,即URG、ACK、PSH、RST、SYN、FIN等,具体含义如下:
- URG:紧急指针(urgent pointer)有效。
- ACK:确认序号有效。
- PSH:接收方应该尽快将这个报文交给应用层。
- RST:重置连接。
- SYN:发起一个新连接。
- FIN:释放一个连接。
需要注意的是:
(A)不要将确认序号Ack与标志位中的ACK搞混了。
(B)确认方Ack=发起方Req+1,两端配对。
通过对 TCP 头的解析,我们知道要掌握 TCP 协议,应该重点关注以下问题:
- 顺序问题
- 丢包问题
- 连接维护
- 流量控制
- 拥塞控制
2. 特点
TCP相对于UDP协议的特点是:面向连接的、字节流和可靠传输。
- 面向连接的:使用TCP协议通信的双方必须先建立连接,然后才能开始数据的读写,TCP连接是全双工的,即双方的数据读写可以通过一个连接进行。完成数据交换之后,通信双方都必须断开连接以释放资源
- 流式服务:TCP的字节流服务的表现形式就体现在,发送端执行的写操作数和接收端执行的读操作次数之间没有任何数量关系,当发送端应用程序连续执行多次写操作的时,TCP模块先将这些数据放入TCP发送缓冲区中。当TCP模块真正开始发送数据的时候,发送缓冲区中这些等待发送的数据可能被封装成一个或多个TCP报文段发出。
- TCP传输是可靠的,原因如下:
(1)TCP协议采用发送应答机制,即发送端发送的每个TCP报文段都必须得到接收方的应答,才能认为这个TCP报文段传输成功。
(2)TCP协议采用超时重传机制,发送端在发送出一个TCP报文段之后启动定时器,如果在定时时间内未收到应答,它将重新发送该报文段。
(3)由于TCP报文段最终是以IP数据报发送的,而IP数据报到达接收端可能乱序、重复、所以TCP协议还会将接收到的TCP报文段重排、整理、再交付给应用层。
3. TCP三次握手
所有的问题,首先都要建立连接,所以首先是连接维护的问题
TCP 的建立连接称为三次握手,可以简单理解为下面这种情况
A:您好,我是 A
B:您好 A,我是 B
A:您好 B
- 第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。
- 第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。
- 第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。
图解为:

4. 四次挥手
所谓四次挥手(Four-Way Wavehand)即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发,整个流程如下图所示:

由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。
- 第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。
- 第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。
- 第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。
- 第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。
5. 应用场景
它适用于对数据传输可靠性要求比较高的场景,例如文本传输之类的。
四、总计及面试问题
1. TCP 和 UDP 的区别:
- TCP 是面向连接的,UDP 是面向无连接的
- UDP程序结构较简单
- TCP 是面向字节流的,UDP 是基于数据报的
- TCP 保证数据正确性,UDP 可能丢包
- TCP 保证数据顺序,UDP 不保证
2. 什么是面向连接,什么是面向无连接
在互通之前,面向连接的协议会先建立连接,如 TCP 有三次握手,而 UDP 不会
3. TCP 为什么是可靠连接
- 通过 TCP 连接传输的数据无差错,不丢失,不重复,且按顺序到达。
- TCP 报文头里面的序号能使 TCP 的数据按序到达
- 报文头里面的确认序号能保证不丢包,累计确认及超时重传机制
- TCP 拥有流量控制及拥塞控制的机制
本文详细介绍了TCP和UDP的区别及其在传输层的作用。TCP是面向连接、可靠的字节流服务,提供三次握手和四次挥手确保连接建立和关闭。UDP则是面向无连接、不可靠的数据报服务,适用于对实时性要求较高的场景,如直播和实时游戏。两者在互联网通信中各有其适用范围。
1429

被折叠的 条评论
为什么被折叠?



