问题描述
A message containing letters from A-Z is being encoded to numbers using the following mapping:
‘A’ -> 1
‘B’ -> 2
…
‘Z’ -> 26
Given a non-empty string containing only digits, determine the total number of ways to decode it.
Example 1:
Input: “12”
Output: 2
Explanation: It could be decoded as “AB” (1 2) or “L” (12).
Example 2:
Input: “226”
Output: 3
Explanation: It could be decoded as “BZ” (2 26), “VF” (22 6), or “BBF” (2 2 6).
解题思路
题意:给出数字型字符串,按照 ‘A’ -> 1, …‘Z’ -> 26的形式编码成字符串只包含A-Z的,可以编码成多少种。对于这类问题想到的就是动态规划,想要知道长度为n的解,就必须要知道长度为n-1的解。在此过程中主要考虑字符串中存在‘0’,连续的两个数字构成的两位数大于26的情况。
代码
public int numDecodings(String s) {
int n = s.length();
if(n == 0 ) return 0;
char[] c = s.toCharArray();
int[] dp = new int[n];
// 边界
if( c[0] == '0') return 0;
else dp[0] = 1;
if(n >= 2) {
int m = ((c[0]-'0')*10 + c[1]-'0');
if(c[1] == '0') {
if(m > 26) return 0;
else dp[1] = 1;
}else {
dp[1] = (m > 26 ? 1 : 2);
}
}
for(int i = 2; i < n; i++){
// 连续为零 直接返回
if(c[i] == '0' && c[i-1] == '0') return 0;
int m = ((c[i-1]-'0')*10 + c[i]-'0');
if(c[i - 1] == '0') {
dp[i] = dp[i-1];
}else if(c[i] == '0'){
if(m > 26) return 0;
else dp[i] = dp[i-2];
}else {
dp[i] = dp[i-1] + (m > 26 ? 0 : dp[i-2]);
}
}
return dp[n-1];
}