题目
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
这道题实际上是 Catalan Number卡塔兰数的一个例子,我们先来看当 n = 1的情况,只能形成唯一的一棵二叉搜索树,n分别为1,2,3的情况如下所示:
1 n = 1 2 1 n = 2 / \ 1 2 1 3 3 2 1 n = 3 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
分析题目
- 求独一无二的二叉搜索树
-
就跟斐波那契数列一样,我们把n = 0 时赋为1,因为空树也算一种二叉搜索树,那么n = 1时的情况可以看做是其左子树个数乘以右子树的个数,左右字数都是空树,所以1乘1还是1。那么n = 2时,由于1和2都可以为跟,分别算出来,再把它们加起来即可。
n = 2的情况可由下面式子算出:
dp[2] = dp[0] * dp[1] (1为根的情况)
+ dp[1] * dp[0] (2为根的情况)
同理可写出 n = 3 的计算方法:
dp[3] = dp[0] * dp[2] (1为根的情况)
+ dp[1] * dp[1] (2为根的情况)
+ dp[2] * dp[0] (3为根的情况)
由此可以得出卡塔兰数列的递推式为:
我们根据以上的分析,可以写出代码如下:
代码
class Solution {
public int numTrees(int n) {
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i < n+1 ; i++)
for(int j = 0; j < i;j++)
dp[i] += dp[j] * dp[i-j-1];
return dp[n];
}
}