1.多重继承数据布局
代码1:
#include <iostream>
#include <stdio.h>
using namespace std;
class Base1
{
public:
int m_bi;
virtual void mybvirfunc() {}
Base1()
{
printf("Base1::Base1()的this指针是:%p!\n", this);
}
};
class Base2
{
public:
int m_b2i;
virtual void mybvirfunc2() {}
Base2()
{
printf("Base2::Base2()的this指针是:%p!\n", this);
}
};
class MYACLS :public Base1, public Base2
{
public:
int m_i;
int m_j;
virtual void myvirfunc() {} //虚函数
MYACLS()
{
int abc = 1;
printf("MYACLS::MYACLS()的this指针是:%p!\n", this);
}
~MYACLS()
{
int def = 0;
}
};
int main()
{
cout << sizeof(MYACLS) << endl;
printf("MYACLS::m_bi = %d\n", &MYACLS::m_bi);
printf("MYACLS::m_b2i = %d\n", &MYACLS::m_b2i);
printf("MYACLS::m_i = %d\n", &MYACLS::m_i);
printf("MYACLS::m_j = %d\n", &MYACLS::m_j);
MYACLS myobj;
myobj.m_i = 3;
myobj.m_j = 6;
myobj.m_bi = 9;
myobj.m_b2i = 12;
return 1;
}
运行结果:
解释:
(1)Base1和MYACLS共用的虚函数指针占4个字节,m_bi占4个字节;
Base2的虚函数指针占4个字节,m_b2i占4个字节;
m_i和m_j各占4各字节,所以总共24个字节
(2)m_bi的偏移量是相对于Base1的,m_b2i的偏移量是相对于Base2的,所以偏移量都为4
(3)m_i和m_j的偏移量是相对于MYACLS的
(4)首先继承Base1,所以子类对象中父类Base1子对象的this指针与子类对象的this指针相同,而父类Base2子对象的this指针需要跳过Base1
内存详情查看:
内存布局:
结论:
(1)通过this指针打印,我们看到访问Base1成员不用跳 ,访问Base2成员要this指针要偏移
(2)this指针,加上偏移值 就的能够访问对应的成员变量,比如m_b2i = 成员变量声明所在类的this指针+偏移值,即我们要访问一个类对象中的成员,成员的定位是通过:this指针(编译器会自动调整)以及该成员的偏移值,这两个因素来定位;这种this指针偏移的调整都需要编译器介入来处理完成;
2.this调整
代码2:
#include <iostream>
#include <stdio.h>
using namespace std;
class Base1
{
public:
int m_bi;
virtual void mybvirfunc() {}
Base1()
{
printf("Base1::Base1()的this指针是:%p!\n", this);
}
};
class Base2
{
public:
int m_b2i;
virtual void mybvirfunc2() {}
Base2()
{
printf("Base2::Base2()的this指针是:%p!\n", this);
}
};
class MYACLS :public Base1, public Base2
{
public:
int m_i;
int m_j;
virtual void myvirfunc() {} //虚函数
MYACLS()
{
int abc = 1;
printf("MYACLS::MYACLS()的this指针是:%p!\n", this);
}
~MYACLS()
{
int def = 0;
}
};
int main()
{
MYACLS myobj;
Base2 *pbase2 = &myobj;
Base1 *pbase1 = &myobj;
printf("&myobj= %p\n", &myobj);
printf("pbase2= %p\n", pbase2);
printf("pbase1= %p\n", pbase1);
return 1;
}
运行结果:
可以发现这种赋值过程中编译器帮我们进行了this指针调整
Base2 *pbase2 = &myobj; //this指针调整导致pbase2实际是向前走8个字节的内存位置的
//myobj = 0x005BFB1C,经过本语句以后,pbase2 = 0x0x005BFB24
//站在编译器视角,把上边这行语句进行了调整
//Base2 *pbase2 = (Base2 *)(((char *)&myobj) + sizeof(Base1));
Base1 *pbase1 = &myobj; //this指针调整之后还是和myobj的地址相同
代码3:
#include <iostream>
#include <stdio.h>
using namespace std;
class Base1
{
public:
int m_bi;
virtual void mybvirfunc() {}
Base1()
{
printf("Base1::Base1()的this指针是:%p!\n", this);
}
};
class Base2
{
public:
int m_b2i;
virtual void mybvirfunc2() {}
Base2()
{
printf("Base2::Base2()的this指针是:%p!\n", this);
}
};
class MYACLS :public Base1, public Base2
{
public:
int m_i;
int m_j;
virtual void myvirfunc() {} //虚函数
MYACLS()
{
int abc = 1;
printf("MYACLS::MYACLS()的this指针是:%p!\n", this);
}
~MYACLS()
{
int def = 0;
}
};
int main()
{
Base2 *pbase2 = new MYACLS(); //父类指针new子类对象 ,这里new出来的是24字节
MYACLS *psubobj = (MYACLS *)pbase2; //比上边地址少了8字节(偏移)
printf("pbase2 = %p\n", pbase2);
printf("psubobj = %p\n", psubobj);
//delete pbase2; //报异常。所以我们认为pbase2里边返回的地址不是分配的首地址,而是偏移后地址。
//而真正分配的首地址应该是在psubobj里边的这个地址
delete psubobj;
}
运行结果:
解释:
Base2 *pbase2 = new MYACLS();
MYACLS *psubobj = (MYACLS *)pbase2;
//同理,这两句赋值过程中也是编译器自动帮我们进行了this指针的调整
另外结论:
访问父类成员跟访问子类成员的效率差不多,不管是通过 对象.成员 还是 对象->成员 的方式访问都差不多
3.更复杂的继承关系的数据布局
例如:
继承关系:
内存布局: