检测图片上的条形码 Python 和 OpenCV

本文介绍如何使用Python和OpenCV检测图像中的条形码,通过图像处理技术,包括梯度计算、二值化、形态学操作等步骤,成功识别不同场景下的条形码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 和 OpenCV 检测图片上的的条形码

这里写图片描述

简介

这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现。我所实现的算法本质上基于StackOverflow 上的这个问题,浏览代码之后,我提供了一些对原始算法的更新和改进。

首先需要留意的是,这个算法并不是对所有条形码有效,但会给你基本的关于应用什么类型的技术的直觉。

假设我们要检测下图中的条形码(例:软件工程第三版 背面条形码):

这里写图片描述

图1:包含条形码的示例图片

读入图片,进行灰度处理

现在让我们开始写点代码,新建一个文件,命名为detect_barcode.py,打开并编码:

1 # import the necessary packages
2 import numpy as np
3 import argparse
4 import cv2
5
6 # construct the argument parse and parse the arguments
7 ap = argparse.ArgumentParser()
8 ap.add_argument("-i", "--image", help = "path to the image file")
9 args = vars(ap.parse_args())

我们首先做的是导入所需的软件包,我们将使用NumPy做数值计算,argparse用来解析命令行参数,cv2是OpenCV的绑定。

然后我们设置命令行参数,我们这里需要一个简单的选择,–image是指包含条形码的待检测图像文件的路径。

*

现在开始真正的图像处理:

11 # load the image and convert it to grayscale
12 image = cv2.imread(args["image"])
13 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
14
15 # compute the Scharr gradient magnitude representation of the images
16 # in both the x and y direction
17 gradX = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 1, dy = 0, ksize = -1)
18 gradY = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 0, dy = 1, ksize = -1)
19
20 # subtract the y-gradient from the x-gradient
21 gradient = cv2.subtract(gradX, gradY)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值