34. Search for a Range

本文介绍了一种算法,用于在一个升序排列的整数数组中找到给定目标值的起始和结束位置。该算法遵循O(log n)的时间复杂度要求,并提供了一个C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,

return [3, 4].

如下写法太丑陋了, 意思是先二分找到第一个K 然后左右再顺序查找扩展, 如果遇到数组都是 KKKKKK  那么时间复杂度还是0(N) ,如下写法加快了些,并不好,直到我在剑指offer 看到了类似的题目: 

#include <iostream> 
#include <vector>

using namespace std;

class Solution {
public:
	vector<int> searchRange(vector<int>& nums, int target) {
		vector<int> volidAns = { -1, -1 };
		if (!nums.size())  return volidAns;
		vector<int> ans;
		int min = 0;
		int max = nums.size() - 1;
		int mid;
		while (min <= max)
		{
			mid = (min + max) / 2;
			if (nums[mid] == target)
			{
				search(mid, ans, nums);
				return ans;
			}
			if (nums[mid] < target) min = mid + 1;
			else
			{
				max = mid - 1;
			}

		}
	}
private:
	void search(int index, vector <int> & ans, vector<int>& nums)
	{
		int rightIndex = index;
		int right = 1, left = 1;
		int leftIndex = index;
		int target = nums[index];
		while (leftIndex >= 0 && nums[leftIndex] == target)
		{
			leftIndex -= left;
			left *= 2;
		}
		left /=2;
		leftIndex += left;
		while (leftIndex >= 0 && nums[leftIndex] == target) --leftIndex;
		++leftIndex;
		ans.push_back(leftIndex);

		while (rightIndex < nums.size() && nums[rightIndex] == target)
		{
			rightIndex += right;
			right *=2;
		}
		right /= 2;
		rightIndex -= right;
		while (rightIndex < nums.size() && nums[rightIndex] == target) ++rightIndex;
		--rightIndex;
		ans.push_back(rightIndex);

	}
};

int main()
{
	vector<int> haha = { 1 };
	Solution a; 
	vector <int> ans = a.searchRange(haha, 0);
	for (int i = 0; i < ans.size(); ++i)
	{
		cout << ans[i] << " ";
	}
	system("pause");
	return 0; 
}
offer 写的比较棒 :






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值