keras 保存最佳的训练模型

  1.  只保存最佳的训练模型
  2. 保存有所有有提升的模型
  3. 加载模型
  4. 参数说明

只保存最佳的训练模型

from keras.callbacks import ModelCheckpoint

filepath='weights.best.hdf5'
    # 有一次提升, 则覆盖一次.
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1,save_best_only=True,mode='max',period=2) callbacks_list = [checkpoint]

model.compile(loss='categorical_crossentropy', optimizer=optimizers.Adam(lr=2e-6,decay=1e-7),metrics=['acc'])

history1 = model.fit_generator(
          train_generator,
          steps_per_epoch=100,
          epochs=40,
          validation_data=validation_generator,
          validation_steps=100, callbacks=callbacks_list)

输出的部分结果为:

Epoch 2/40
100/100 [==============================] - 24s 241ms/step - loss: 0.2715 - acc: 0.9380 - val_loss: 0.1635 - val_acc: 0.9600

Epoch 00002: va
Keras是一个深度学习框架,它提供了保存最好模型的功能。保存最好的模型非常重要,因为在训练过程中不同的参数可能会导致模型表现不同,我们需要找到在验证集上表现最好的模型进行预测。 要保存最好的模型,我们需要使用Keras的`ModelCheckpoint`回调函数。这个函数允许我们定义一些参数来保存最好的模型。常用的参数包括`monitor`,`mode`和`filepath`。 首先,我们需要设置`monitor`参数来监测模型性能的指标,如验证集的准确率或损失。我们可以选择设置`mode`为"min"或"max",具体取决于选择的监测指标是损失还是准确率。如果监测指标是损失,那么`mode`应该设置为"min";如果监测指标是准确率,那么`mode`应该设置为"max"。 接下来,我们需要设置`filepath`参数来保存最好的模型的文件路径和名称。可以使用占位符例如`{epoch}`和`{val_accuracy}`在文件名中动态地添加有关模型的信息,如训练轮次和验证准确率。 当定义好`ModelCheckpoint`回调函数后,我们可以将其作为参数传递给`fit`函数,在训练过程中自动保存最好的模型。 以下是一个示例代码,展示了如何使用Keras保存最好的模型: ```python from keras.callbacks import ModelCheckpoint # 定义ModelCheckpoint回调函数 checkpoint = ModelCheckpoint(filepath='best_model.h5', monitor='val_accuracy', mode='max', save_best_only=True) # 训练模型时使用ModelCheckpoint回调函数 model.fit(x_train, y_train, validation_data=(x_val, y_val), callbacks=[checkpoint]) # 载入已保存的最好模型 model.load_weights('best_model.h5') ``` 使用上述代码,训练过程中会自动保存验证准确率最高的模型,并保存为"best_model.h5"文件。最后,我们可以通过`load_weights`函数来加载已保存的最好模型。 通过保存最好的模型,我们可以避免在训练过程中遗失表现良好的模型,并在下一次需要进行预测时使用最佳模型
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值