Keras版Faster-RCNN代码学习(IOU,RPN)1
Keras版Faster-RCNN代码学习(Batch Normalization)2
Keras版Faster-RCNN代码学习(loss,xml解析)3
Keras版Faster-RCNN代码学习(roipooling resnet/vgg)4
Keras版Faster-RCNN代码学习(measure_map,train/test)5
mAP
mAP是目标算法中衡量算法的精确度的指标,涉及两个概念:查准率Precision、查全率Recall。对于object detection任务,每一个object都可以计算出其Precision和Recall,多次计算/试验,每个类都 可以得到一条P-R曲线,曲线下的面积就是AP的值,这个mean的意思是对每个类的AP再求平均,得到的就是mAP的值,mAP的大小一定在[0,1]区间。
AP:Precision对Recall积分,可通过改变正负样本阈值求得矩形面积,进而求积分得到,也可以通过sklearn.metrics.average_precision_score函数直接得到。
mAP:每类AP求均值
measure_py
传入预测值和真实值和resize比例,得到可以传入sklearn.metrics.average_precision_score函数的值,即:真实值和预测概率
def get_map(pred, gt, f):
T = {}
P = {}
fx, fy = f
for bbox in gt:
bbox['bbox_matched'] = False
pred_probs = np.array([s['prob'] for s in pred])
box_idx_sorted_by_prob = np.argsort(pred_probs)[::-1]
for box_idx in box_idx_sorted_by_prob:
pred_box = pred[box_idx]
pred_class = pred_box['class']
pred_x1 = pred_box['x1']
pred_x2 = pred_box['x2']
pred_y1 = pred_box['y1']
pred_y2 = pred_box['y2']
pred_prob = pred_box['prob']
if pred_class not in P:
P[pred_class] = []
T[pred_class] = []
P[pred_class].append(pred_prob)
found_match = False
for gt_box in gt:
gt_class = gt_box['class']
gt_x1 = gt_box['x1']/fx
gt_x2 = gt_box['x2']/fx
gt_y1 = gt_box['y1']/fy
gt_y2 = gt_box['y2']/fy
gt_seen = gt_box['bbox_matched']
if gt_class != pred_class:
continue
if gt_seen:
continue
iou = data_generators.iou((pred_x1, pred_y1, pred_x2, pred_y2), (gt_x1, gt_y1, gt_x2, gt_y2))
if iou >= 0.5:
found_match = True
gt_box['bbox_matched'] = True
break
else:
continue
T[pred_class].append(int(found_match))
#漏检的计入
for gt_box in gt:
if not gt_box['bbox_matched'] and not gt_box['difficult']:
if gt_box['class'] not in P:
P[gt_box['class']] = []
T[gt_box['class']] = []
T[gt_box['class']].append(1)
P[gt_box['class']].append(0)
#import pdb
#pdb.set_trace()
return T, P
resize比例计算
def format_img(img, C):
img_min_side = float(C.im_size)
(height,width,_) = img.shape
if width <= height:
f = img_min_side/width
new_height = int(f * height)
new_width = int(img_min_side)
else:
f = img_min_side/height
new_width = int(f * width)
new_height = int(img_min_side)
fx = width/float(new_width)
fy = height/float(new_height)
img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
img = img[:, :, (2, 1, 0)]
img = img.astype(np.float32)
img[:, :, 0] -= C.img_channel_mean[0]
img[:, :, 1] -= C.img_channel_mean[1]
img[:, :, 2] -= C.img_channel_mean[2]
img /= C.img_scaling_factor
img = np.transpose(img, (2, 0, 1))
img = np.expand_dims(img, axis=0)
return img, fx, fy
然后搭建网络,载入权重,传递参数,计算mAP~~
train_frcnn
from __future__ import division
import random
import pprint
import sys
import time
import numpy as np
from optparse import OptionParser
import pickle
from keras import backend as K
from keras.optimizers import Adam, SGD, RMSprop
from keras.layers import Input
from keras.models import Model
from keras_frcnn import config, data_generators
from keras_frcnn import losses as losses
import keras_frcnn.roi_helpers as roi_helpers
from keras.utils import generic_utils
sys.setrecursionlimit(40000)
parser = OptionParser()
parser.add_option("-p", "--path", dest="train_path", help="Path to training data.")
parser.add_option("-o", "--parser", dest="parser", help="Parser to use. One of simple or pascal_voc",
default="pascal_voc")
parser.add_option("-n", "--num_rois", type="int", dest="num_ro