还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 49358 Accepted Submission(s): 22539
Problem Description某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output对每个测试用例,在1行里输出最小的公路总长度。
Sample Input3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3 5Huge input, scanf is recommended.HintHint
要养成初始化的好习惯OTZ.....
// hdu1233.cpp : 定义控制台应用程序的入口点。
//
//kruskal prim
#include "stdafx.h"
#include<iostream>
#include<vector>
#include<cstring>
#include<algorithm>
#include<queue>
#define maxn 102
#define inf 0x3fffffff
using namespace std;
struct node {
int u, v, d;
node(int uu=-1, int vv=-1, int dd=-1) {
u = uu, v = vv, d = dd;
}
bool operator <(const node& b)const {
return d > b.d; //最小堆
}
};
int map[maxn][maxn],fa[maxn],vis[maxn];
int dis[maxn];
vector<node> edges;
vector<node>G[maxn];
vector<node>::iterator it;
int N;
int find(int s) {
if (fa[s] == s) {
return s;
}
return fa[s] = find(fa[s]);
}
void kruskal() {
sort(edges.begin(), edges.end());
int len = edges.size();
for (int i = 1; i <= N; i++) {
fa[i] = i;
}
int num = 0,ans = 0;
for (int i = 0; i < len; i++) {
node a = edges[i];
int f1 = find(a.u), f2 = find(a.v);
if (f1 == f2) {
continue;
}
//cout << a.u << " " << a.v << " " << a.d << endl;
num++;
ans += a.d;
fa[f1] = f2;
if (num == N - 1) {
break;
}
}
cout << ans << endl;
}
void prim() {
priority_queue<node>Q;
for (int i = 1; i <= N; i++) {
dis[i] = inf;
}
memset(vis, 0, sizeof(vis));
Q.push(node(0, 1, 0));
int num = 0,ans = 0;
while (!Q.empty()) {
node a= Q.top();
Q.pop();
if (vis[a.v]) {
continue;
}
vis[a.v] = 1;
ans += a.d;
int u = a.v, d = a.d;
for (it = G[u].begin();it!=G[u].end();it++){
int vv = it->v;
int dd = it->d;
if (dis[vv] > dd) {
Q.push(node(it->u,it->v,it->d));
dis[vv] = dd;
}
}
}
cout << ans << endl;
}
int main()
{
int u, v, d;
while (~scanf("%d", &N),N) {
edges.clear(); //清空清空!!!
for (int i = 1; i <= N; i++) {
G[i].clear();//清空清空!!!
}
for (int i = 1; i <= N*(N-1)/2; i++) {
scanf("%d%d%d", &u,&v,&d);
G[u].push_back(node(u,v,d));
//edges.push_back(node(u, v, d));
G[v].push_back(node(v, u, d));
}
//kruskal();
prim();
}
return 0;
}