题目
△ABC的角平分线分别是AD、BE、CF,∠BAC=120°,求证:DE⊥DF。
设B为
D的坐标是:
(3−123√tan(u)+3,0)
E的坐标是:
(3√sin(2u)−2cos(u)+cos(2u)2cos(u)−1,−2sin(u)(3√sin(u)+cos(u)−2)2cos(u)−1)
F的坐标是:
⎛⎝⎜⎜⎜2sin(u)(sin(u)−3√cos(u))3√sin(u)+cos(u)−1+1,4sin2(u2)(3√cos(u)−sin(u))3√sin(u)+cos(u)−1⎞⎠⎟⎟⎟
向量DE−→−为:
(23√sin(u)(1−2cos(u))3√sin(u)+3cos(u),2sin(u)(3√sin(u)+cos(u)−2)2cos(u)−1)
向量DF−→−
⎛⎝⎜⎜⎜−4sin2(u2)(23√sin(u)−3)(2cos(u)+1)(3√sin(u)+cos(u)−1)(3√sin(u)+3cos(u)),4sin2(u2)(sin(u)−3√cos(u))3√sin(u)+cos(u)−1⎞⎠⎟⎟⎟
而,DE−→−⋅DF−→−=0,所以,DE⊥DF。