next seq

该博客展示了如何使用Spark处理数据,特别是针对相邻订单时间间隔小于10分钟的情况。通过加载文本文件,进行数据转换,按用户和城市ID分组,然后计算满足条件的订单次数,最终输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

package xiangqi_spark.YeWu
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import xiangqi_spark.util_scala.YearMonthDay2Timestamp

import scala.collection.mutable
import scala.collection.mutable.Set
/**
  * Created by Administrator on 2018/1/3.
  */
object LaoTie {
  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("trip_test").setMaster("local[*]")
    conf.set("spark.testing.memory", "1847483648")
    val sc = new SparkContext(conf)

//    val line: RDD[String] = sc.textFile("E:\\work-xq\\项目\\24相邻订单小于10分钟次数\\trip.txt")
    val line: RDD[String] = sc.textFile("E:\\work-xq\\项目\\24相邻订单小于10分钟次数\\666.txt")
    val datardd: RDD[(String, String, String,String)] = line.map(
      x => {
        val data: Array[String] = x.split(",")
        val trip_id = data(0)
        val user_id = data(1)
        val city_id = data(2)
        val start_time = data(3)
        val time_consume = data(4)
        ( user_id+","+city_id, start_time, time_consume,trip_id)
      }
    )

    val rdd1: RDD[(String, Iterable[(String, String, String,String)])] = datardd.groupBy(_._1)

    val values: RDD[(String, Int)] = rdd1.mapValues ( value => {

      val map: Iterable[(String, String, String)] = value.map ( x =>
        (x._2, x._3, x._4)
      )
      //开始时间,时间距离,orderid
      val seq: Seq[(String, String, String)] = map.toSeq.sortBy ( y =>
        YearMonthDay2Timestamp.stringToTimestamp ( y._1 )
      )

      val res: mutable.Set[String] = mutable.Set ( )
      for (i <- 1 until seq.length) {
        if (seq ( i - 1 )._2.toInt < 10 && seq ( i )._2.toInt < 10) {
          res.add ( seq ( i - 1 )._3 )
          res.add ( seq ( i )._3 )
        }
      }
      res.size
    } )
    val map: RDD[(String, Int)] = values.map ( x => {
      val keyArray: Array[String] = x._1.split ( "," )
      val key = keyArray ( 1 )
      (key, x._2)
    } )
    map.reduceByKey(_+_).foreach(println)
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值