100个最受欢迎的机器学习课程视频

本文精选了VideoLectures.net上最受欢迎的机器学习讲座,涵盖了从基础到高级的主题,包括高斯过程、支持向量机、概率论、深度学习等,并介绍了多位知名专家的精彩演讲。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:http://blog.videolectures.net/100-most-popular-machine-learning-talks-at-videolectures-net/

Enjoy this weeks list!

  1. 26971views,1:00:45,Gaussian Process Basics, David MacKay,8comments
  2. 7799views,3:08:32,Introduction to Machine Learning, Iain Murray
  3. 16092views,1:28:05,Introduction to Support Vector Machines, Colin Campbell,22comments
  4. 5755views,2:53:54,Probability and Mathematical Needs, Sandrine Anthoine, 2comments
  5. 7960views,3:06:47,A tutorial on Deep Learning, Geoffrey E. Hinto
  6. 3858views,2:45:25,Introduction to Machine Learning, John Quinn,1comment
  7. 13758views,5:40:10,Statistical Learning Theory,John Shawe-Taylor,3comments
  8. 12226views,1:01:20,Semisupervised Learning Approaches, Tom Mitchell,8comments
  9. 1596views,1:04:23,Why Bayesian nonparametrics?,Zoubin Ghahramani, 1comment
  10. 11390views,3:52:22,Markov Chain Monte Carlo Methods,Christian P. Robert,5comments
  11. 3153views,2:15:00,Data mining and Machine learning algorithms, José L. Balcázar,1comment
  12. 10322views,5:15:43,Graphical models, Zoubin Ghahramani,23comments
  13. 11071views,1:05:40,Dirichlet Processes, Chinese Restaurant Processes, and all that,Michael I. Jordan,7comments
    Daniel Wolpert - we are bayesian inference mac...

    Daniel Wolpert – we are bayesian inference machines – 1 (Photo credit: pseudonomad)

  14. 10550views,1:06:55,Generative Models for Visual Objects and Object Recognition via Bayesian Inference, Fei-Fei Li,11comments
  15. 9312views,03:21,K-nearest neighbor classification, Antal van den Bosch,7comments
  16. 4800views,2:07:31,Patterns in Vector Spaces, Elisa Ricci,1comment
  17. 736views,16:55,Twitter Sentiment in Financial Domain, Miha Grčar,1comment
  18. 6789views,2:06:40,Introduction to kernel methods, Bernhard Schölkopf,5comments
  19. 6849views,2:54:37,Some Mathematical Tools for Machine Learning,Chris Burges,6comments
  20. 6792views,1:24:46,Bayesian Learning, Zoubin Ghahramani,9comments
  21. 6689views,4:33:48,Graphical Models and Variational Methods, Christopher Bishop,11comments
  22. 844views,17:05,High-Dimensional Graphical Model Selection, Animashree Anandkumar
  23. 5862views,57:16,Introduction to feature selection, Isabelle Guyon,1comment
  24. 5541views,2:14:21,Introduction to kernel methods, Alexander J. Smola,8comments
  25. 2304views,3:22:46,Introduction to Kernel Methods, Liva Ralaivola,1comment
  26. 723views,16:26,Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries, Zhen James Xiang
  27. 1628views,23:12,Gradient Boosted Decision Trees on Hadoop, Jerry Ye
  28. 5169views,4:16:53,Learning with Kernels,4comments
  29. 2038views,03:18,Scikitlearn, Gael Varoquaux
  30. 4965views,32:36,The Dynamics of AdaBoost,Cynthia Rudin,3comments
  31. 4433views,2:16:17,Sequential Monte Carlo methods, Arnaud Doucet,9comments
  32. 4859views,1:37:46,Online Learning and Game Theory, Adam Kalai,3comments
  33. 4237views,20:36,Learning to align: a statistical approach,Elisa Ricci,1comment
  34. 2645views,21:49,Online Dictionary Learning for Sparse Coding, Julien Mairal, 1comment
    Cover of 'Statistical Learning Theory'

    Cover of Statistical Learning Theory

  35. 4727views,3:13:52,Bayesian Inference: Principles and Practice, Mike Tipping,6comments
  36. 1419views,2:49:30,Online Learning, Peter L. Bartlett
  37. 2973views,21:01,Training a Binary Classifier with the Quantum Adiabatic Algorithm, Hartmut Neven,1comment
  38. 3973views,08:55,Machine Learning for Stock Selection, Charles X. Ling,3comments
  39. 3900views,2:56:35,Machine learning and finance, László Györfi, 3comments
  40. 3517views,2:10:19,Learning with Gaussian Processes, Carl Edward Rasmussen,7comments
  41. 222views,29:03,Generating Possible Interpretations for Statistics from Linked Open Data,Heiko Paulheim
  42. 4089views,2:32:26,Graph Matching Algorithms, Terry Caelli,6comments
  43. 3948views,3:39:05,Clustering – An overview, Marina Meila,1comment
  44. 3903views,2:11:59,An Introduction to Pattern Classification, Elad Yom Tov,1comment
  45. 3896views,5:18:05,Statistical Learning Theory, Olivier Bousquet,3comments
  46. 1541views,38:10,Learning with similarity functions, Maria Balcan
  47. 51views,1:00:30,A Flexible Model for Count Data: The COM-Poisson Distribution, Galit Shmuél
  48. 331views,41:53,Automatic Discovery of Patterns in News Content, Nello Cristianini,2comments
  49. 1132views,2:31:35,Gaussian Processes, Edwin V. Bonilla
  50. 2256views,1:08:39,Lecture 1 – The Motivation & Applications of Machine Learning, Andrew Ng
  51. 666views,21:47,On the Usefulness of Similarity based Projection Spaces for Transfer Learning, Emilie Morvant
  52. 1112views,36:35,Robust PCA and Collaborative Filtering: Rejecting Outliers, Identifying Manipulators, Constantine Caramanis
  53. 3294views,2:01:49,The EM algorithm and Mixtures of Gaussians, Joaquin Quiñonero Candela,4comments
  54. 3444views,5:35:17,Independent Component Analysis, Jean-François Cardoso,2comments
  55. 1918views,19:47,Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations, Honglak Lee
  56. 790views,1:00:20,Classification and Clustering in Large Complex Networks, Ina Eliasi-Rad
  57. 986views,2:44:35,Restricted Boltzmann Machines and Deep Belief Nets, Marcus Frean
  58. 23views,17:29,Improved Initialisation and Gaussian Mixture Pairwise Terms for Dense Random Fields with Mean-field Inference, Vibhav Vineet
  59. 1915views,1:22:16,Lecture 11 – Bayesian Statistics and Regularization, Andrew Ng
  60. 3129views,4:31:39,Kernel Methods, Alexander J. Smola2comments
  61. 2577views,1:21:29,Graphical models, Zoubin Ghahramani
  62. 2160views,1:00:37,Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric?, Zoubin Ghahramani,2comments
    Zoubin Ghahramani - 'Internet search queries'

    Zoubin Ghahramani – ‘Internet search queries’ (Photo credit: Engineering at Cambridge)

  63. 3018views,4:35:51,Graphical Models, Variational Methods, and Message-Passing, Martin J. Wainwright,6comments
  64. 3017views,3:43:43,Introduction to Kernel Methods, Bernhard Schölkopf,1comment
  65. 1257views,1:24:39,Reinforcement learning: Tutorial + Rethinking State, Action & Reward, Satinder Singh
  66. 1044views,18:34,On the stability and interpretability of prognosis signatures in breast cancer, Anne-Claire Haury,1comment
  67. 2827views,00:58,Artificial intelligence: An instance of Aibo ingenuity, Michael Littman,2comments
  68. 163views,22:35,Exploiting Information Extraction, Reasoning and Machine Learning for Relation Prediction, Xueyan Jiang,2comments
  69. 1704views,2:42:22,Theory and Applications of Boosting, Robert Schapire,1comment
  70. 387views,18:48,High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity, Po-Ling Loh
  71. 1912views,38:30,Machine learning and kernel methods for computer vision, Francis R. Bach
  72. 2755views,32:18,Neighbourhood Components Analysis, Sam Roweis,1comment
  73. 2295views,28:18,Learning an Outlier-Robust Kalman Filter, Jo-Anne Ting,1comment
  74. 1308views,25:08,Probabilistic Machine Learning in Computational Advertising, Thore Graepel
  75. 2670views,4:22:31,Gaussian Processes, Carl Edward Rasmussen,2comments
  76. 1772views,58:42,Probabilistic Decision-Making Under Model Uncertainty, Joelle Pineau
  77. 2198views,58:51,Who is Afraid of Non-Convex Loss Functions?, Yann LeCun
  78. 339views,54:15,Machine Learning Markets, Amos Storkey
  79. 2560views,1:49:01,Generalized Principal Component Analysis (GPCA), Rene Vidal,8comments
  80. 1247views,25:00,FPGA-based MapReduce Framework for Machine Learning, Ningyi Xu
  81. 2527views,58:39,Latent Semantic Variable Models, Thomas Hofmann,3comments
  82. 324views,18:31,k-NN Regression Adapts to Local Intrinsic Dimension, Samory Kpotufe
  83. 1485views,1:20:37,Lecture 14 – The Factor Analysis Model, Andrew Ng
  84. 2000views,1:11:49,Hierarchical Clustering, Yee Whye Teh
  85. 316views,16:38,Discussion of Erik Sudderth’s talk: NPB Hype or Hope?, Yann LeCun
  86. 309views,16:15,A Collaborative Mechanism for Crowdsourcing Prediction Problems, Jacob Aberneth
  87. 1993views,39:15,Speeding Up Stochastic Gradient Descent, Yoshua Bengio
  88. 126views,24:42,LODifier: Generating Linked Data from Unstructured Text, Isabelle Augenstein
  89. 304views,19:47,Iterative Learning for Reliable Crowdsourcing Systems, Sewoong Oh
  90. 1246views,24:03,Collaborative Filtering with Temporal Dynamics, Yehuda Koren
  91. 714views,21:56,HIV-Haplotype Inference using a Constraintbased Dirichlet Process Mixture Model, Sandhya Prabhakaran, Melanie Rey
  92. 1272views,22:40,Modeling the S&P 500 Index using the Kalman Filter and the LagLasso, Nicolas Mahle
  93. 2064views,10:47,Ten problems for the next 10 years, Pedro Domingos,1comment
  94. 2097views,23:15,Best Paper – Information-Theoretic Metric Learning, Brian Kulis
  95. 926views,1:10:31,Neuroscience, cognitive science and machine learning, Konrad Körding
  96. 2210views,1:21:57,Introduction to Kernel Methods, Partha Niyogi,5comments
  97. 291views,12:00,Fast and Accurate k-means For Large Datasets, Michael Shindler
  98. 2203views,2:56:16,Probabilistic and Bayesian Modelling I, Manfred Opper,1 comment
  99. 2198views,1:00:00,Nonparametric Bayesian Models in Machine Learning, Zoubin Ghahramani
  100. 1901views,48:34,Machine Learning for Intrusion Detection, Pavel Laskov

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值