51nod 1024 矩阵中不重复的元素(简单粗暴)

本文探讨了一个m*n矩阵中不重复元素的数量计算问题,该矩阵由特定指数规律生成。通过使用对数转换来解决元素比较的问题,并提供了一段C++代码实现,最终输出矩阵中不重复元素的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1024 矩阵中不重复的元素


一个m*n的矩阵。

该矩阵的第一列是a^b,(a+1)^b,.....(a + n - 1)^b
第二列是a^(b+1),(a+1)^(b+1),.....(a + n - 1)^(b+1)
.......
第m列是a^(b + m - 1),(a+1)^(b + m - 1),.....(a + n - 1)^(b + m - 1)
(a^b表示a的b次方)

下面是一个4*4的矩阵:

2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
5^2=25, 5^3=125, 5^4=625, 5^5=3125

问这个矩阵里有多少不重复的数(比如4^3 = 8^2,这样的话就有重复了)

2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024

m = 4, n = 3, a = 2, b = 2。其中2^4与4^2是重复的元素。
Input
输入数据包括4个数:m,n,a,b。中间用空格分隔。m,n为矩阵的长和宽(2 <= m,n <= 100)。a,b为矩阵的第1个元素,a^b(2 <= a , b <= 100)。
Output
输出不重复元素的数量。
Input示例
4 3 2 2
Output示例
11

通过大神指导,才知道需要取对数。。

ps:

           当你比较大小关系的时候 碰到指数问题 是一定要想到取对数的

<span style="font-size:18px;">#include<iostream>
#include<set>
#include<cstdio>
#include<cmath>
using namespace std;
set<double> s;


int main()
{
	int m,n,a,b;
	scanf("%d%d%d%d",&m,&n,&a,&b);
	for(int i=a;i<a+n;i++)
	  for(int j=b;j<b+m;j++)
	  {
	  	 double v=(double)j*log2(1.0*i);
	     s.insert(v);
	 }
	printf("%d\n",s.size());
}</span>


题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float(&#39;inf&#39;) # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值