1:Feature Transfer Learning for Face Recognition with Under-Represented Data
基于数据不足的数据集通过特征迁移学习人脸识别。
2:Disentangled Representation Learning for 3D Face Shape
将3D的人脸形状分解成认证部分(identity part)和表示部分(expression)
3: AdaptiveFace: Adaptive Margin and Sampling for Face Recognition
自适应的margin softmax loss算法,用于处理人脸数据集不均衡问题
4:Low-Rank Laplacian-Uniform Mixed Model for Robust Face Recognition
解决人脸图像会因为遮挡,损坏等问题不能被正确识别的问题
5:Attribute-aware Face Aging with Wavelet-based Generative Adversarial Networks
用wavelet-based gan优化年轻人脸和年老人脸的匹配模糊问题。
6:Noise-Tolerant Paradigm for Training Face Recognition CNNs
大规模人脸数据集中难免会出现某些图片的标签标错了,标错了的数据集用于训练明显会有负面影响,但是如果查找数据集一张一张改正过来是非常耗时耗力的一件工作,本文解决这个问题。
7:Expressive Body Capture: 3D Hands, Face, and Body from a Single Image
单张人体的三维重建,里面又Pytorch源码,数据,(没找到代码)
8: Monocular Total Capture: Posing Face, Body, and Hands in the Wild
和7 功能上基本上差不多。
9:Boosting Local Shape Matching for Dense 3D Face Correspondence
两张人脸模型匹配
10:Combining 3D Morphable Models: A Large scale Face-and-Head Model
不懂
1