原文:https://blog.youkuaiyun.com/luoweifu/article/details/45695569
目录
一. 什么是拷贝构造函数
#include <iostream>
using namespace std;
class CExample {
private:
int a;
public:
//构造函数
CExample(int b)
{ a = b;}
//拷贝构造函数
CExample(const CExample& C)
{
a = C.a;
}
//一般函数
void Show ()
{
cout<<a<<endl;
}
};
int main()
{
CExample A(100);
CExample B = A; // CExample B(A); 也是一样的
B.Show ();
return 0;
}
二. 拷贝构造函数的调用时机
1. 对象以值传递的方式传入函数参数
int main()
{
CExample test(1);
//传入对象
g_Fun(test);
return 0;
}
2. 对象以值传递的方式从函数返回
//全局函数
CExample g_Fun()
{
CExample temp(0);
return temp;
}
int main()
{
g_Fun();
return 0;
}
3. 对象需要通过另外一个对象进行初始化;
CExample A(100);
CExample B = A;
// CExample B(A);
三. 浅拷贝和深拷贝
1. 默认拷贝构造函数
很多时候在我们都不知道拷贝构造函数的情况下,传递对象给函数参数或者函数返回对象都能很好的进行,这是因为编译器会给我们自动产生一个拷贝构造函数,这就是“默认拷贝构造函数”,这个构造函数很简单,仅仅使用“老对象”的数据成员的值对“新对象”的数据成员一一进行赋值,它一般具有以下形式
Rect::Rect(const Rect& r)
{
width = r.width;
height = r.height;
}
不能处理静态变量:
class Rect
{
public:
Rect() // 构造函数,计数器加1
{
count++;
}
~Rect() // 析构函数,计数器减1
{
count--;
}
static int getCount() // 返回计数器的值
{
return count;
}
private:
int width;
int height;
static int count; // 一静态成员做为计数器
};
int Rect::count = 0; // 初始化计数器
int main()
{
Rect rect1;
cout<<"The count of Rect: "<<Rect::getCount()<<endl;
Rect rect2(rect1); // 使用rect1复制rect2,此时应该有两个对象
cout<<"The count of Rect: "<<Rect::getCount()<<endl;
return 0;
}
在主函数中,首先创建对象rect1,输出此时的对象个数,然后使用rect1复制出对象rect2,再输出此时的对象个数,按照理解,此时应该有两个对象存在,但实际程序运行时,输出的都是1,反应出只有1个对象。此外,在销毁对象时,由于会调用销毁两个对象,类的析构函数会调用两次,此时的计数器将变为负数。
修正结果:
Rect(const Rect& r) // 拷贝构造函数
{
width = r.width;
height = r.height;
count++; // 计数器加1
}
2. 浅拷贝
所谓浅拷贝,指的是在对象复制时,只对对象中的数据成员进行简单的赋值,默认拷贝构造函数执行的也是浅拷贝。大多情况下“浅拷贝”已经能很好地工作了,但是一旦对象存在了动态成员,那么浅拷贝就会出问题了,让我们考虑如下一段代码:
class Rect
{
public:
Rect() // 构造函数,p指向堆中分配的一空间
{
p = new int(100);
}
~Rect() // 析构函数,释放动态分配的空间
{
if(p != NULL)
{
delete p;
}
}
private:
int width;
int height;
int *p; // 一指针成员
};
int main()
{
Rect rect1;
Rect rect2(rect1); // 复制对象
return 0;
}
在这段代码运行结束之前,会出现一个运行错误。原因就在于在进行对象复制时,对于动态分配的内容没有进行正确的操作。我们来分析一下:
在运行定义rect1对象后,由于在构造函数中有一个动态分配的语句,因此执行后的内存情况大致如下:
在使用rect1复制rect2时,由于执行的是浅拷贝,只是将成员的值进行赋值,这时 rect1.p= rect2.p,也即这两个指针指向了堆里的同一个空间,如下图所示:
当然,这不是我们所期望的结果,在销毁对象时,两个对象的析构函数将对同一个内存空间释放两次,这就是错误出现的原因。我们需要的不是两个p有相同的值,而是两个p指向的空间有相同的值,解决办法就是使用“深拷贝”。
3. 深拷贝
在“深拷贝”的情况下,对于对象中动态成员,就不能仅仅简单地赋值了,而应该重新动态分配空间,如上面的例子就应该按照如下的方式进行处理:
Rect(const Rect& r)
{
width = r.width;
height = r.height;
p = new int; // 为新对象重新动态分配空间
*p = *(r.p);
}
4. 防止默认拷贝发生
通过对对象复制的分析,我们发现对象的复制大多在进行“值传递”时发生,这里有一个小技巧可以防止按值传递——声明一个私有拷贝构造函数。甚至不必去定义这个拷贝构造函数,这样因为拷贝构造函数是私有的,如果用户试图按值传递或函数返回该类对象,将得到一个编译错误,从而可以避免按值传递或返回对象。
class CExample
{
private:
int a;
public:
//构造函数
CExample(int b)
{
a = b;
cout<<"creat: "<<a<<endl;
}
private:
//拷贝构造,只是声明
CExample(const CExample& C);
public:
~CExample()
{
cout<< "delete: "<<a<<endl;
}
void Show ()
{
cout<<a<<endl;
}
};
//全局函数
void g_Fun(CExample C)
{
cout<<"test"<<endl;
}
int main()
{
CExample test(1);
//g_Fun(test); 按值传递将出错
return 0;
}