高斯消元求线性方程组的解
高斯消元复杂度 O(N^3)
参考 :整数线性方程组的解 | 自由变元的个数
http://www.cnblogs.com/kuangbin/archive/2012/09/01/2667044.html
浮点线性方程组的解
http://www.cnblogs.com/kuangbin/p/3428573.html
异或方程组的解
http://blog.csdn.net/u012936765/article/details/46966517
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
using namespace std ;
const int maxn = 300 ;
int equ , var ;
int a[maxn][maxn] ;
int x[maxn] ;
int free_x[maxn] ;
int free_num ;
void dis(){
for(int i = 0 ;i<10 ;i++){
for( int j = 0 ;j<10 ;j++)
cout<<a[i][j]<<" ";
cout<<endl;
}
cout<<"asdfasd"<<endl;
for(int i = 0 ;i<10 ;i++)
cout<<x[i]<<" ";
cout<<endl;
}
int Gauss(){
int max_r , col , k ;
free_num = 0 ;
for( k = 0 , col = 0 ; k < equ && col < var ; k ++ , col ++){
max_r = k ;
for( int i = k + 1 ; i<equ ;i++){
if( abs( a[i][col] > abs( a[max_r][col] )))
max_r = i ;
}
if( a[max_r][col] == 0 ){
k -- ;
free_x[ free_num ++ ] = col ;
continue ;
}
if( max_r != k ){
for( int j = col ; j<var + 1 ; j++){
swap( a[k][j] , a[max_r][j]) ;
}
}
for(int i = k + 1 ; i<equ ;i++){
if( a[i][col] != 0 ){
for( int j = col ; j< var + 1 ; j++)
a[i][j] ^= a[k][j] ;
}
}
}
for(int i = k ;i<equ ;i++)
if( a[i][col] != 0 )
return -1 ;
if( k < var)
return var - k ;
for( int i = var - 1 ; i>=0 ;i--){
x[i] = a[i][var] ;
for( int j = i + 1 ; j<var ; j++)
x[i] ^= ( a[i][j] && x[j] ) ;
}
dis() ;
return 0 ;
}
int n ;
void init(){
memset( a, 0 , sizeof( a )) ;
memset( x , 0 , sizeof( x )) ;
equ = n* n ;
var = n* n ;
for( int i = 0 ; i < n ; i++)
for( int j = 0 ; j< n ;j++){
int t = i * n + j ;
a[t][t] = 1 ;
if( i>0 ) a[ ( i - 1 ) * n + j ][t] = 1 ;
if( i<n-1 )
a[ ( i+1) * n + j ][t] = 1;
if( j > 0 )
a[i*n + j -1][t] = 1 ;
if( j < n - 1)
a[i* n + j + 1][t] = 1 ;
}
}
void solve(){
int t = Gauss() ;
cout<<t<<endl;
if( t== -1 ){
printf("inf\n") ;
return ;
}
else if( t== 0 ){
int ans = 0 ;
for( int i = 0 ; i<n* n ;i++){
ans += x[i] ;
}
printf("%d\n" , ans ) ;
return ;
}
else{
int ans = 0x3f3f3f3f ;
int tot = ( 1<< t ) ;
for( int i = 0 ; i< tot ; i++){
int cnt = 0 ;
for( int j = 0 ; j<t ; j++){
if( i & ( 1<< j )){
x[free_x[j]] = 1 ;
cnt ++ ;
}
else
x[free_x[j]] = 0 ;
}
for( int j = var - t - 1 ; j >= 0 ; j--){
int idx ;
for( idx = j ; idx < var ; idx ++)
if( a[j][idx])
break ;
x[idx] = a[j][var] ;
for( int l = idx + 1 ; l < var ; l++)
if( a[j][l] )
x[idx] ^= x[l] ;
cnt += x[idx] ;
}
ans = min( ans , cnt ) ;
}
printf("%d\n" , ans ) ;
}
}
char str[30][30] ;
int main(){
int T ;
scanf("%d" , &T) ;
while( T-- ){
scanf("%d" , & n ) ;
init() ;
for( int i = 0 ; i< n ;i++){
scanf("%s" , str[i]) ;
for( int j = 0 ; j< n ;j ++){
if( str[i][j] == 'y')
a[i* n + j ][n* n ] = 0 ;
else
a[i*n+j][n*n ] = 1 ;
}
}
solve() ;
}
return 0 ;
}
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
const int MAXN=400;
int a[MAXN][MAXN];
int x[MAXN];
bool free_x[MAXN];
inline int gcd(int a,int b)
{
int t;
while(b!=0)
{
t=b;
b=a%b;
a=t;
}
return a;
}
inline int lcm(int a,int b)
{
return a/gcd(a,b)*b;
}
int Gauss(int equ,int var)
{
int i,j,k;
int max_r;
int col;
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index;
for(int i=0;i<=var;i++)
{
x[i]=0;
free_x[i]=true;
}
col=0;
for(k = 0;k < equ && col < var;k++,col++)
{
max_r=k;
for(i=k+1;i<equ;i++)
{
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k)
{
for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==0)
{
k--;
continue;
}
for(i=k+1;i<equ;i++)
{
if(a[i][col]!=0)
{
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<0)tb=-tb;
for(j=col;j<var+1;j++)
{
a[i][j] = ((a[i][j]*ta-a[k][j]*tb)%7+7)%7;
}
}
}
}
for (i = k; i < equ; i++)
{
if ( a[i][col] != 0) return -1;
}
if (k < var)
{
for (i = k - 1; i >= 0; i--)
{
free_x_num = 0;
for (j = 0; j < var; j++)
{
if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
}
if (free_x_num > 1) continue;
temp = a[i][var];
for (j = 0; j < var; j++)
{
if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j]%7;
temp=(temp%7+7)%7;
}
x[free_index] = (temp / a[i][free_index])%7;
free_x[free_index] = 0;
}
return var - k;
}
for (i = var - 1; i >= 0; i--)
{
temp = a[i][var];
for (j = i + 1; j < var; j++)
{
if (a[i][j] != 0) temp -= a[i][j] * x[j];
temp=(temp%7+7)%7;
}
while (temp % a[i][i] != 0) temp+=7;
x[i] =( temp / a[i][i])%7 ;
}
return 0;
}
int tran(char *s)
{
if(strcmp(s,"MON")==0)return 1;
else if(strcmp(s,"TUE")==0) return 2;
else if(strcmp(s,"WED")==0) return 3;
else if(strcmp(s,"THU")==0) return 4;
else if(strcmp(s,"FRI")==0) return 5;
else if(strcmp(s,"SAT")==0) return 6;
else return 7;
}
char str1[20];
char str2[20];
int main()
{
int n,m;
int k;
int t;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0)break;
memset(a,0,sizeof(a));
for(int i=0;i<m;i++)
{
scanf("%d%s%s",&k,&str1,&str2);
a[i][n]=((tran(str2)-tran(str1)+1)%7+7)%7;
while(k--)
{
scanf("%d",&t);
t--;
a[i][t]++;
a[i][t]%=7;
}
}
int ans=Gauss(m,n);
if(ans==0)
{
for(int i=0;i<n;i++)
if(x[i]<=2)x[i]+=7;
for(int i=0;i<n-1;i++)printf("%d ",x[i]);
printf("%d\n",x[n-1]);
}
else if(ans==-1)printf("Inconsistent data.\n");
else printf("Multiple solutions.\n");
}
return 0;
}