龟兔赛跑
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 15029 Accepted Submission(s): 5592
Problem Description
据说在很久很久以前,可怜的兔子经历了人生中最大的打击——赛跑输给乌龟后,心中郁闷,发誓要报仇雪恨,于是躲进了杭州下沙某农业园卧薪尝胆潜心修炼,终于练成了绝技,能够毫不休息得以恒定的速度(VR m/s)一直跑。兔子一直想找机会好好得教训一下乌龟,以雪前耻。
最近正值HDU举办50周年校庆,社会各大名流齐聚下沙,兔子也趁此机会向乌龟发起挑战。虽然乌龟深知获胜希望不大,不过迫于舆论压力,只能接受挑战。
比赛是设在一条笔直的道路上,长度为L米,规则很简单,谁先到达终点谁就算获胜。
无奈乌龟自从上次获胜以后,成了名龟,被一些八卦杂志称为“动物界的刘翔”,广告不断,手头也有了不少积蓄。为了能够再赢兔子,乌龟不惜花下血本买了最先进的武器——“"小飞鸽"牌电动车。这辆车在有电的情况下能够以VT1 m/s的速度“飞驰”,可惜电池容量有限,每次充满电最多只能行驶C米的距离,以后就只能用脚来蹬了,乌龟用脚蹬时的速度为VT2 m/s。更过分的是,乌龟竟然在跑道上修建了很多很多(N个)的供电站,供自己给电动车充电。其中,每次充电需要花费T秒钟的时间。当然,乌龟经过一个充电站的时候可以选择去或不去充电。
比赛马上开始了,兔子和带着充满电的电动车的乌龟并列站在起跑线上。你的任务就是写个程序,判断乌龟用最佳的方案进军时,能不能赢了一直以恒定速度奔跑的兔子。
最近正值HDU举办50周年校庆,社会各大名流齐聚下沙,兔子也趁此机会向乌龟发起挑战。虽然乌龟深知获胜希望不大,不过迫于舆论压力,只能接受挑战。
比赛是设在一条笔直的道路上,长度为L米,规则很简单,谁先到达终点谁就算获胜。
无奈乌龟自从上次获胜以后,成了名龟,被一些八卦杂志称为“动物界的刘翔”,广告不断,手头也有了不少积蓄。为了能够再赢兔子,乌龟不惜花下血本买了最先进的武器——“"小飞鸽"牌电动车。这辆车在有电的情况下能够以VT1 m/s的速度“飞驰”,可惜电池容量有限,每次充满电最多只能行驶C米的距离,以后就只能用脚来蹬了,乌龟用脚蹬时的速度为VT2 m/s。更过分的是,乌龟竟然在跑道上修建了很多很多(N个)的供电站,供自己给电动车充电。其中,每次充电需要花费T秒钟的时间。当然,乌龟经过一个充电站的时候可以选择去或不去充电。
比赛马上开始了,兔子和带着充满电的电动车的乌龟并列站在起跑线上。你的任务就是写个程序,判断乌龟用最佳的方案进军时,能不能赢了一直以恒定速度奔跑的兔子。
Input
本题目包含多组测试,请处理到文件结束。每个测试包括四行:
第一行是一个整数L代表跑道的总长度
第二行包含三个整数N,C,T,分别表示充电站的个数,电动车冲满电以后能行驶的距离以及每次充电所需要的时间
第三行也是三个整数VR,VT1,VT2,分别表示兔子跑步的速度,乌龟开电动车的速度,乌龟脚蹬电动车的速度
第四行包含了N(N<=100)个整数p1,p2...pn,分别表示各个充电站离跑道起点的距离,其中0<p1<p2<...<pn<L
其中每个数都在32位整型范围之内。
第一行是一个整数L代表跑道的总长度
第二行包含三个整数N,C,T,分别表示充电站的个数,电动车冲满电以后能行驶的距离以及每次充电所需要的时间
第三行也是三个整数VR,VT1,VT2,分别表示兔子跑步的速度,乌龟开电动车的速度,乌龟脚蹬电动车的速度
第四行包含了N(N<=100)个整数p1,p2...pn,分别表示各个充电站离跑道起点的距离,其中0<p1<p2<...<pn<L
其中每个数都在32位整型范围之内。
Output
当乌龟有可能赢的时候输出一行 “What a pity rabbit!"。否则输出一行"Good job,rabbit!";
题目数据保证不会出现乌龟和兔子同时到达的情况。
题目数据保证不会出现乌龟和兔子同时到达的情况。
Sample Input
100 3 20 5 5 8 2 10 40 60 100 3 60 5 5 8 2 10 40 60
Sample Output
Good job,rabbit! What a pity rabbit!
此题重点在于多阶段决策时的状态设计。记录dp[i]为到第i个加油站的最短时间(并不确定第i个加油站是否需要加油,其实本来就应该这么设计,因为起点和终点也被看做加油站,所以dp[N+1]即为所求,如果第i个需要加油,那就不对了)。状态转移方程为dp[i]=min(dp[j]+t[j,i]) (0<=j<i) 。t[j,i]即为从第j个加油站加满油出来,且在j到i过程中没有加油,这样就把所有情况包括进去了,且效率很高,后期只需要dp[j]即最优解即可,节省了很多没必要的计算时间。另外,有个小技巧:整数表达式想要不强制转换,可以直接在原式*1.0,由于表达式计算的特性,计算时会把所有数转化成double型再进行计算。
/*------------------Header Files------------------*/
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <ctype.h>
#include <cmath>
#include <stack>
#include <queue>
#include <map>
#include <vector>
#include <limits.h>
using namespace std;
/*------------------Definitions-------------------*/
#define LL long long
#define PI acos(-1.0)
#define INF 0x3F3F3F3F
#define MOD 10E9+7
#define MAX 500050
/*---------------------Work-----------------------*/
int dis[150];
double dp[150];
void work()
{
int L;
while(cin>>L)
{
int N,C,T,VR,VT1,VT2;
scanf("%d%d%d%d%d%d",&N,&C,&T,&VR,&VT1,&VT2);
for(int i=1;i<=N;i++)
scanf("%d",&dis[i]);
dis[0]=0,dis[N+1]=L;
dp[0]=0;
double time,length;
for(int i=1;i<=N+1;i++)
{
dp[i]=INF;
for(int j=0;j<i;j++)
{
length=1.0*(dis[i]-dis[j]);
if(length<=C) time=length/VT1;
else time=1.0*C/VT1+(length-C)/VT2;
time=time+dp[j];
if(j!=0) time=time+T;
dp[i]=min(dp[i],time);
}
}
if(dp[N+1]<1.0*L/VR) printf("What a pity rabbit!\n");
else printf("Good job,rabbit!\n");
}
}
/*------------------Main Function------------------*/
int main()
{
//freopen("test.txt","r",stdin);
//freopen("cowtour.out","w",stdout);
//freopen("cowtour.in","r",stdin);
work();
return 0;
}