翻纸牌游戏

链接:http://njoj.org/Problem/Hdu/2209/点击打开链接

翻纸牌游戏 

Time Limit: Java: 9000 ms / Others: 3000 ms

Memory Limit: Java: 32768 KB / Others: 32768 KB

Description

有一种纸牌游戏,很有意思,给你N张纸牌,一字排开,纸牌有正反两面,开始的纸牌可能是一种乱的状态(有些朝正,有些朝反),现在你需要整理这些纸牌。但是麻烦的是,每当你翻一张纸牌(由正翻到反,或者有反翻到正)时,他左右两张纸牌(最左边和最右边的纸牌,只会影响附近一张)也必须跟着翻动,现在给你一个乱的状态,问你能否把他们整理好,使得每张纸牌都正面朝上,如果可以,最少需要多少次操作。

Input

有多个case,每个case输入一行01符号串(长度不超过20),1表示反面朝上,0表示正面朝上。

Output

对于每组case,如果可以翻,输出最少需要翻动的次数,否则输出NO。

Sample Input

01
011

Sample Output

NO
1
思想:1、两种情况,是否翻转第一张纸牌,取两者最小值。2、若使第i张纸牌翻动,则需翻动第i+1和第i+2张纸牌

#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
#define INFI 99999999
string s,s1;
int l;
int digui(int i)
{
   if(i==l-1)
   {
       if(s1[i]=='0')
        return 0;
       else
        return INFI;
   }
   else
   {
       if(s1[i]=='0')//第i张纸牌本身为正,无需翻动
        return digui(i+1);
       else//第i张纸牌为反,需要翻动第i+1和第i+2张纸牌
       {
           if(s1[i+1]=='0')
            s1[i+1]='1';
           else
            s1[i+1]='0';
           if(s1[i+2]=='0')
            s1[i+2]='1';
           else
            s1[i+2]='0';
           return 1+digui(i+1);
       }
   }
}
void init()
{
    while(cin>>s)
    {
      l=s.length();
      int k=1,k1,k2;
      if(l==1)
      {
          if(s[0]=='0')
            k=0;
      }
      else
      {
          for(int j=0;j<l;j++)
            s1[j]=s[j];
          k1=digui(0);//第一张纸牌本身不翻转,其翻转由第二张纸牌翻转引起
          for(int j=0;j<l;j++)
            s1[j]=s[j];
          if(s1[0]=='0')
            s1[0]='1';
          else
            s1[0]='0';
          if(s1[1]=='0')
            s1[1]='1';
          else
            s1[1]='0';
          k2=1+digui(0);//第一张纸牌翻转
          if(k1>k2)
            k=k2;
          else
            k=k1;
      }
      if(k<INFI)
      cout<<k<<endl;
      else
        cout<<"NO"<<endl;

    }
}

int main()
{
    init();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值