语义分割研究现状

以语义分割热门的数据集Cityscapes的精度作为参考,比较当前语义分割网络效果:

可以通过ICNet中的这张图来说明目前大多数方法的精度以及速度,目前MIOU超过80的有PSPNet、ResNet38、PSPNet、DUC、以及DANet最近开源的CCNet(最后两个基于attention机制)。

最简单的基于FCN的人脸语义分割Code:

https://github.com/HqWei/Semantic-Segmentation-with-Full-Convolutional-Neural-Network

热门文章和Code:

PSPNet :Pyramid Scene Parsing Network

https://github.com/hszhao/PSPNet

DeeplabV3 :Rethinking Atrous Convolution for Semantic Image Segmentation

Paper: https://arxiv.org/abs/1706.05587

Code:https://github.com/NanqingD/Dee

RGBD图像语义分割是指利用RGBD图像中的颜色和深度信息,将图像中的每个像素分配到它所属的语义类别中。目前,RGBD图像语义分割已经成为计算机视觉领域的一个研究热点,也是很多实际应用的基础,例如机器人视觉、智能交通、医疗诊断等领域。 目前,RGBD图像语义分割研究现状如下: 1. 基于传统计算机视觉方法的RGBD图像语义分割:这类方法主要基于特征提取和分类器设计,其主要思路是将RGBD图像转化为特征向量,再通过分类器将特征向量分配到不同的语义类别中。常见的特征提取方法包括SIFT、HOG、LBP等,常见的分类器包括SVM、Random Forest等。 2. 基于深度学习的RGBD图像语义分割:这类方法主要通过卷积神经网络(CNN)来学习RGBD图像中的特征,然后通过softmax分类器将每个像素分配到不同的语义类别中。常见的深度学习模型包括FCN、SegNet、DeepLab等。 3. 组合RGB和深度信息的RGBD图像语义分割:这类方法主要是将RGB和深度信息融合在一起,从而提高图像语义分割的准确性。常见的融合方法包括特征级融合、决策级融合等。 总的来说,基于深度学习的RGBD图像语义分割已经成为主流,而组合RGB和深度信息的融合方法也正在得到更多的关注。未来,随着深度学习技术的不断发展,相信RGBD图像语义分割研究会越来越深入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值