PTA:Maximum Subsequence Sum

本文深入探讨了求解最大子序列和的经典算法,通过详细分析输入规格和输出规格,展示了如何高效地从一系列整数中找出具有最大和的连续子序列。特别关注了特殊情况的处理,如所有数均为负数时的定义,并提供了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
Input Specification:
Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤10000). The second line contains K numbers, separated by a space.

Output Specification:
For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21
Sample Output:
10 1 4

#include <bits/stdc++.h>
using namespace std;

int main()
{
	int N;
	cin >> N;
	int array[N];
	for (int i = 0; i < N; i++) {
		cin >> array[i];
	}
	int sum=0,first=0,src=N-1,end=N-1,max=-1;

	for (int i = 0; i < N; i++) {
		sum += array[i];
		if (sum > max) {
			max = sum;
			src = first;
			end = i;
		}

		if (sum <0) {
			first = i + 1;
			sum = 0;
		}
	}
	if (max<0) cout << 0 << ' ' << array[0] << ' ' << array[N - 1];
	else cout << max << ' ' << array[src] << ' ' << array[end];
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值