argmax函数轴取值

在深度学习中,argmax函数很常见,标签采用ont-hot,输出层用softmax激活可以加快网络训练速度和提升准确率,而在取值时,用argmax函数取值,涉及轴问题,数据在哪个轴,axis就填哪个轴,通常数据都在最后一个轴,下面举例说明。
一维情形:
代码:

import tensorflow as tf
import numpy as np

np_arry = (np.random.normal(size=[10]))

tf_arry=tf.Variable(np_arry)

init=tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    print(sess.run(tf.argmax(tf_arry,axis=0)))

结果:6

二维:

import tensorflow as tf
import numpy as np

np_arry = (np.random.normal(size=[3,10]))

tf_arry=tf.Variable(np_arry)

init=tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    print(sess.run(tf.argmax(tf_arry,axis=1)))

结果:[4 6 4]
注意,二维的时候,3是批次,10是数据,我们如果使axis=0,程序不会报错,但结果是错的,结果的意义是批次为10,数据长度为3
三维:

import tensorflow as tf
import numpy as np

np_arry = (np.random.normal(size=[3,4,10]))

tf_arry=tf.Variable(np_arry)

init=tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    print(sess.run(tf.argmax(tf_arry,axis=2)))

结果:
[[0 2 8 5]
[4 9 1 0]
[7 2 6 4]]
三维一般在RNN中比较常见

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值