大数据学习之(yarn)

一、hadoop yarn 简介

Apache YARN (Yet Another Resource Negotiator) 是 hadoop 2.0 引入的集群资源管理系统。用户可以将各种服务框架部署在 YARN 上,由 YARN 进行统一地管理和资源分配。

二、YARN架构

1. ResourceManager

ResourceManager 通常在独立的机器上以后台进程的形式运行,它是整个集群资源的主要协调者和管理者。ResourceManager 负责给用户提交的所有应用程序分配资源,它根据应用程序优先级、队列容量、ACLs、数据位置等信息,做出决策,然后以共享的、安全的、多租户的方式制定分配策略,调度集群资源。

2. NodeManager

NodeManager 是 YARN 集群中的每个具体节点的管理者。主要负责该节点内所有容器的生命周期的管理,监视资源和跟踪节点健康。具体如下:

  • 启动时向 ResourceManager 注册并定时发送心跳消息,等待 ResourceManager 的指令;
  • 维护 Container 的生命周期,监控 Container 的资源使用情况;
  • 管理任务运行时的相关依赖,根据 ApplicationMaster 的需要,在启动 Container 之前将需要的程序及其依赖拷贝到本地。

3. ApplicationMaster

在用户提交一个应用程序时,YARN 会启动一个轻量级的进程 ApplicationMasterApplicationMaster 负责协调来自 ResourceManager 的资源,并通过 NodeManager 监视容器内资源的使用情况,同时还负责任务的监控与容错。具体如下:

  • 根据应用的运行状态来决定动态计算资源需求;
  • 向 ResourceManager 申请资源,监控申请的资源的使用情况;
  • 跟踪任务状态和进度,报告资源的使用情况和应用的进度信息;
  • 负责任务的容错。

4. Container

Container 是 YARN 中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等。当 AM 向 RM 申请资源时,RM 为 AM 返回的资源是用 Container 表示的。YARN 会为每个任务分配一个 Container,该任务只能使用该 Container 中描述的资源。ApplicationMaster 可在 Container 内运行任何类型的任务。例如,MapReduce ApplicationMaster 请求一个容器来启动 map 或 reduce 任务,而 Giraph ApplicationMaster 请求一个容器来运行 Giraph 任务。

  • YARN工作流程

1.用户向YARN提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等;

2.ResourceManager为该应用程序分配第一个Container,并与对应的NodeManager通信,要求它在这个Container中启动应用程序的ApplicationMaster;

3.ApplicationMaster启动后首先向ResourceManager注册,这样用户可以直接通过ResourceManager查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束,即重复步骤4~7;

4.ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源;

5.一旦ApplicationMaster申请到资源后,则与对应的NodeManager通信,要求其启动任务;

6.NodeManager为任务设置好运行环境(包括环境变量、jar包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务;

7.各个任务通过某RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。

在应用程序运行过程中,用户可以随时通过RPC向ApplicationMaster查询应用程序的当前运行状态;

8.应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。

  • YARN容错

RM挂掉:单点故障,新版本可以基于Zookeeper实现HA高可用集群,可通过配置进行设置准备RM,主提供服务,备同步主的信息,一旦主挂掉,备立即做切换接替进行服务

NM挂掉:不止一个,当一个挂了,会通过心跳方式通知RM,RM将情况通知对应AM,AM作进一步处理

AM挂掉:若挂掉,RM负责重启,其实RM上有一个RMApplicationMaster, 是AM,上面保存已经完成的task,若重启AM,无需重新运行已经完成的task

  • YARN的调度器

FIFO Scheduler先进先出调度器:按提交顺序,最简单,大应用占用所有集群资源,不适合共享集群

Capacity Scheduler容量调度器:专有队列运转小任务,预先占一定集群资源,导致大任务执行时间落后于FIFO

Fair Scheduler公平调度器:不需要预占,动态调整,公平共享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值