WannaflyUnion挑战赛6 A完全平方数

本文介绍了一种高效解决多次查询指定范围内完全平方数个数问题的方法。通过利用数学性质简化计算过程,避免了使用复杂的线段树等数据结构。特别讨论了边界情况,并提供了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

题目链接

多次查询[l,r]范围内的完全平方数个数

定义整数x为完全平方数当且仅当可以找到整数y使得y*y=x

范围

n <= 100000
0<= l <= r <= 1000000000

题意理解

第一眼看到多次查询[l,r]范围的时候,还以为是一道线段树。后来发现好像没有那么复杂。

官方题解

[1,n]中完全平方数个数就是sqrt( n )

注意特判0

我的解释

根据这个官方题解,我们可以知道,[1,l),也就是[1,l-1]内完全平方数的个数为 l1 ,那么[0,l-1]内的完全平方数个数为 l1+1 ;[0,r]内的完全平方数为 r+1 。那么,[l,r]内的完全平方数个数,就是 r+1(l1+1) 。当然需要注意特判0。

代码

注意一下对于0是有特判的。0在左边的时候,[0, -1]完全平方数数量为0,0在右边的时候,[0, 0]完全平方数数量为1。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;

int main(){
    int n;
    scanf("%d", &n);
    int l, r; 
    for(int i = 0 ;i < n; i++){
        scanf("%d %d", &l, &r);
        if(l == 0){
            l = 0;
        } else {
            l = sqrt(l - 1) + 1;
        } 
        if(r == 0) {
            r = 1;  
        } else {
            r = sqrt(r) + 1;
        }
        printf("%d\n", r - l);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值