[Usaco07Jan] Running

本文介绍了一种使用动态规划解决跑步距离最大化问题的方法。通过记录不同疲劳值下的最佳跑步距离,最终求得在给定疲劳恢复规则下,n分钟内能跑的最大距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题解:dp

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
const int N=10005, M=505;
int f[N][M],n,m,d[N];//第i分钟疲劳为j的跑步距离

int main() {
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>d[i];
    for(int i=1;i<=n;i++){
        f[i][0]=max(f[i][0],f[i-1][0]);//疲劳值为0时休息
        for(int j=1;j<=n;j++) {
            f[i][j]=f[i-1][j-1]+d[i];//跑
            if(i-j>0) f[i][0]=max(f[i][0],f[i-j][j]);//休息,因为疲劳值要恢复0,所以从f[i-j][j]转移过来
        }
    }
    cout<<f[n][0]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值