题目链接:http://poj.org/problem?id=1679
题意:给出连接边的两点和权值,求得最小生成树是否唯一,唯一输出最小生成树权值和,否则输出“Not Unique!”。
题解1:第一种方法从最小生成树的形成过程来考虑,我们考虑
1.在现有最小生成树加入一个点的时候,我们找到两个及两个以上的最优点,会导致不唯一。
2.在加入一个点后,更新未选点到最小生成树最小距离时,我们更新的最小距离相等,会导致不唯一。
ac代码
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
using namespace std;
#define INF 0x3f3f3f3f
typedef long long LL;
const double PI = acos(-1.0);
const int mod = 1e9 + 7;
const int N = 110;
int n,m;
int p[N][N];
int dis[N];
int v[N];
int prim()
{
int ans = 0;
for(int i = 1; i <= n; i++)
{
dis[i] = INF;
v[i] = 0;
}
dis[1] = 0;
for(int i = 1; i <= n; i++)
{
int MIN = INF;
int next;
for(int j = 1; j <= n; j++)
{
if(!v[j] && dis[j] <= MIN)
{
if(MIN == dis[j] && MIN != INF)
return -1;
MIN = dis[j];
next = j;
}
}
if(MIN == INF)
break;
ans += MIN;
v[next] = 1;
for(int j = 1; j <= n; j++)
{
if(!v[j] && dis[j] > p[next][j])
dis[j] = p[next][j];
else if(!v[j] && dis[j] == p[next][j] && dis[j] != INF)
return -1;
}
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
{
if(i == j)
p[i][j] = 0;
else
p[i][j] = p[j][i] = INF;
}
for(int i = 0; i < m; i++)
{
int x,y,v;
scanf("%d%d%d",&x,&y,&v);
p[x][y] = p[y][x] = v;
}
if(prim() == -1)
printf("Not Unique!\n");
else
printf("%d\n",prim());
}
return 0;
}
题解二:从次小生成树来考虑,次小生成树算法,我们记录了所有两点间最大边,我们用两点的直接距离替换最大边距离,以致达到最小生成树的效果,如果替换后权值和不变则不唯一。
ac代码
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
using namespace std;
#define INF 0x3f3f3f3f
typedef long long LL;
const double PI = acos(-1.0);
const int mod = 1e9 + 7;
const int N = 110;
int n,m;
int p[N][N];
int maxn[N][N];
int dis[N];
int v[N],pre[N];
int used[N][N];
double prim()
{
int ans = 0;
memset(used,0,sizeof(used));
memset(maxn,0,sizeof(maxn));
for(int i = 1; i <= n; i++)
{
dis[i] = INF;
v[i] = 0;
}
dis[1] = 0;
pre[1] = 0;
for(int i = 0; i < n; i++)
{
int MIN = INF;
int next;
for(int j = 1; j <= n; j++)
{
if(!v[j] && dis[j] < MIN)
{
next = j;
MIN = dis[j];
}
}
if(MIN == INF)
return -1;
ans += MIN;
if(next != 1)
used[pre[next]][next] = used[next][pre[next]] = 1;
v[next] = 1;
for(int j = 1; j <= n; j++)
{
if(v[j] && j != next)
maxn[next][j] = maxn[j][next] = max(maxn[pre[next]][j],dis[next]);
if(!v[j] && dis[j] > p[next][j])
{
dis[j] = p[next][j];
pre[j] = next;
}
}
}
return ans;
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
{
if(i != j)
p[i][j] = INF;
else
p[i][j] = 0;
}
while(m--)
{
int a,b,v;
scanf("%d%d%d",&a,&b,&v);
if(p[a][b] > v)
p[a][b] = p[b][a] = v;
}
int ans = prim();
if(ans == -1)
{
printf("Not Unique!");
continue;
}
int MIN = INF;
for(int i = 1; i <= n; i++)
{
for(int j = i+1; j <= n; j++)
{
if(!used[i][j] && p[i][j] != INF)
MIN=min(MIN,ans+p[i][j]-maxn[i][j]);
}
}
if(MIN == ans)
printf("Not Unique!\n");
else
printf("%d\n",ans);
}
return 0;
}