Faster Rcnn 代码解读之 roi_data_layer/layer.py

本文深入剖析Faster R-CNN目标检测算法中roi_data_layer/layer.py模块的实现细节,揭示其在训练过程中的关键功能,包括ROI池化、数据预处理等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick and Xinlei Chen
# --------------------------------------------------------

"""The data layer used during training to train a Fast R-CNN network.

RoIDataLayer implements a Caffe Python layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from model.config import cfg
from roi_data_layer.minibatch import get_minibatch
import numpy as np
import time


class RoIDataLayer(object):
    """Fast R-CNN data layer used for training."""

    def __init__(self, roidb, num_classes, random=False):
        """Set the roidb to be used by this layer during training."""
        self._roidb = roidb
        self._num_classes = num_classes
        # Also set a random flag
        self._random = random
        self._shuffle_roidb_i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值