For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:6767Sample Output 1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174Sample Input 2:
2222Sample Output 2:
2222 - 2222 = 0000注意本身有可能就是6174
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
int tomax(int a[]){
int sum=0;
for(int i=3;i>=0;i--){
sum=sum*10+a[i];
}
return sum;
}
int tomin(int a[]){
int sum=0;
for(int i=0;i<=3;i++){
sum=sum*10+a[i];
}
return sum;
}
int main() {
int n;
cin>>n;
do{
int fz=n;
int a[10]={0},cnt=0;
while(fz){
a[cnt++]=fz%10;
fz/=10;
}
sort(a,a+4);
int maxn=tomax(a);
int minn=tomin(a);
n=maxn-minn;
printf("%04d - %04d = %04d\n",maxn,minn,n);
}while(n!=6174&&n!=0);
return 0;
}