题目链接:https://cn.vjudge.net/problem/UVALive-7344
——————————————————————————————————————————
You have N cards and each has an unique number between 1 and N written on it. In how many
ways can you select a non-empty subset of the cards such that the number written on any two of your selected cards don’t have any common digits?
For example, when N = 12, {1, 2, 3}, {2, 11}, {3, 4, 5, 6, 7, 8, 9, 12} are some valid selections. But
{1, 2, 10}, {2, 5, 12} are not allowed.
Input
The first line of the input contains an integer T
(T≤15)
which is the number of test cases. Each of
the following T lines denote a test case, containing an integer N
(1≤N<109)
.
Output
For each test case, output the case number followed by the number of subsets modulo 1000000007.
Sample Input
2
3
12
Sample Output
Case 1: 7
Case 2: 1151
————————————————————————————————————————————
题目大意:
让你在[1,N]内选择一些数构成一个集合,使得集合中任意两个数没有相同的数字,(但一个数可以由相同的数字比如11.22),问你合法的集合的个数
首先能确定的是集合中数最多不超过10个,那么可以枚举来
先选择一个,在选择第二个,保证其两者不没有相同位即可
显然这个过程是可以进行dp的
用长度为10的二进制表示0~9.然后进行转移即可
设dp[i][j],表示取到第i个数是选择了j(二进制)对应的这些数字
从而有 dp[i][j]=∑dp[i−1][k]∗A(表示k\xorj这个状态下的数的个数)
显然有一个O(10*1024*1024)即可
但是对于 A(表示k\xorj这个状态下的数的个数) 我们应该怎么求呢
显然是预处理啊 ,
通过数位dp进行统计,预处理出每种状态下的数的个数。
附本题代码
————————————————————————————————————————————
LL dp_nex[15][(1<<12)];
int n;
int num[12],len;
int dp[12][1111];
int f[1111];
int dfs(int pos,int limit,int na,int &nb){
if(pos<0) return na==nb;
int &t=dp[pos][na];
if(!limit&&t!=-1) return t;
int endi = 9;if(limit) endi=num[pos];
int res = 0;
for(int i=0;i<=endi;i++){
if( (na|i) == 0 )
res+=dfs(pos-1,endi==i&&limit,na,nb);
else if(nb&(1<<i))
res+=dfs(pos-1,endi==i&&limit,na|(1<<i),nb);
}
if(!limit) t=res;
return res;
}
void solve(int x){
for(len=0;x;x/=10) num[len++]=x%10;
f[0]=f[1]=0;
for(int i=2;i<(1<<10);i++){
memset(dp,-1,sizeof(dp));
f[i]=dfs(len-1,1,0,i);
}
}
LL qmod(LL a,LL b){
LL res = 1;
while(b){
if(b&1) res=res*a%MOD;
b>>=1; a =a *a%MOD;
}
return res;
}
int main(){
int t,kcase=0;scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n);
memset(dp_nex,0,sizeof(dp_nex));
solve(n);
dp_nex[0][0]=1;
int endi=(1<<10);
for(int i=1;i<=10;i++){
for(int j=0;j<endi;j++){
for(int k=0;k<endi;k++){
if(j==k)continue;
if(((j&k)==k))
dp_nex[i][j]=(dp_nex[i][j]+dp_nex[i-1][k]*f[j-k])%MOD;
}
}
}
LL output=0;
for(int i=1;i<=10;i++){
int tmp=1;
for(int j=1;j<=i;j++) tmp*=j;
for(int j=0;j<endi;j++)
output=(output+qmod(tmp,MOD-2)*dp_nex[i][j])%MOD;
}
printf("Case %d: %lld\n",++kcase,output);
}
return 0;
}