Seaborn中文教程

Seaborn介绍:

Seaborn属于Matplotlib的一个高级接口,为我们进行数据的可视化分析提供了极大的方便。
博主是为了入门Kaggle比赛而学习的Seaborn,下面是博主的学习过程,希望可以和大家一起分享。

Step 1:安装Seaborn

首先确定你的电脑已安装以下应用
- Python 2.7+ or Python 3
- Pandas
- Matplotlib
- Seaborn
- Jupyter Notebook(可选)

打开Jupyter Notebook, 过几秒钟会弹出网页窗口Home。
Home

点击右侧的New,新建一个Notebook,弹出一个新的网页窗口,点击上方可命名文件。
Seaborn

Step 2:加载库和数据文件

加载pandas、matplotlib、seaborn。
这里写图片描述

这里提供了一个数据文件,下载链接为:
Pokemon.csv

用pandas读取数据文件,并显示前五行。
这里写图片描述

编译后的结果为一个列表。
这里写图片描述

Step 3:Seaborn的绘图功能

Seaborn最大的优点之一在于其种类繁多的绘图功能,下面我们利用lmplot()函数,用一行代码来绘制散点图。

我们希望x轴显示Attack数据,y轴显示Defense数据,则可以编写代码。
这里写图片描述

事实上seaborn并没有专门用来绘制散点图的功能,实际上我们用它来拟合和绘制回归线。
<code>这里写图片描述</code>

幸运的是,我们可以通过设置函数的参数来得到我们想要的散点图。用fit_reg = False 移去回归线,用hug参数来用不同颜色显示Pokemon进化阶段的信息。

1. 目录 1. 目录 2 2. 绘图函数Plotting functions 4 2.1. 可视化的统计关系Visualizing statistical relationships 4 2.1.1. 用散点图联系变量Relating variables with scatter plots 4 2.1.2. 强调线条图的连续性Emphasizing continuity with line plots 10 2.1.3. 显示切面的多个关系Showing multiple relationships with facets 21 2.2. 分类数据绘图Plotting with categorical data 24 2.2.1. 分类散点图Categorical scatterplots 26 2.2.2. 分类观测值分布Distributions of observations within categories 31 2.2.3. 分类统计估计Statistical estimation within categories 37 2.2.4. 对“wide-form”数据作图Plotting “wide-form” data 41 2.2.5. 显示facet的多个关系Showing multiple relationships with facets 43 2.3. 可视化数据集的分布Visualizing the distribution of a dataset 44 2.3.1. 绘制单变量分布Plotting univariate distributions 45 2.3.2. 绘制二元分布Plotting bivariate distributions 51 2.3.3. 在数据集中可视化成对关系Visualizing pairwise relationships in a dataset 55 2.4. 可视化线性关系Visualizing linear relationships 57 2.4.1. 函数绘制线性模型Functions to draw linear regression models 58 2.4.2. 拟合不同种类的模型Fitting different kinds of models 61 2.4.3. 在其他变量上的情况Conditioning on other variables 68 2.4.4. 控制图表的大小和形状Controlling the size and shape of the plot 71 2.4.5. 在其他上下文中绘制回归图Plotting a regression in other contexts 73 3. 多图网格Multi-plot grids 76 3.1. 构建结构化的多图网格Building structured multi-plot grids 76 3.2. 有条件的小倍数Conditional small multiples 77 3.3. 使用定制函数Using custom functions 86 3.4. 绘制成对的数据关系Plotting pairwise data relationships 90 4. 绘图美学Plot aesthetics 99 4.1. 控制图表美学Controlling figure aesthetics 99 4.1.1. Seaborn图表风格Seaborn figure styles 101 4.1.2. 删除轴上的小凸起Removing axes spines 104 4.1.3. 临时设置图表样式Temporarily setting figure style 105 4.1.4. 覆盖Seaborn样式的元素Overriding elements of the seaborn styles 106 4.1.5. 缩放图表元素Scaling plot elements 108 4.2. 选择调色板Choosing color palettes 111 4.2.1. 创建颜色调色板Building color palettes 111 4.2.2. 定性调色板Qualitative color palettes 112 4.2.3. 连续调色板Sequential color palettes 116 4.2.4. 不同颜色的调色板Diverging color palettes 122 4.2.5. 设置默认调色板Setting the default color palette 124 5. 教程中的数据集 125
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值