Weakly Supervised Deep Detection Networks 阅读笔记

本文介绍了Weakly Supervised Deep Detection Networks的整体架构,包括预训练网络、区域级描述符、识别与检测分支,以及训练过程中的空间正则化。与其它方法对比,WSDDN的检测分支独立于识别分支,更侧重于设计。实验部分展示了WSDDN在CorLoc上的表现,尽管存在将多个对象实例归为一个框的问题,但仍然展示了其在弱监督检测中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Weakly Supervised Deep Detection Networks 阅读笔记

Overall architecture

 

1. Existing network(such as AlexNet pre-trained on ImageNet)

2. SPP --> region level descriptor

3. (1) class score --> recognition

(2) probability distribution(which region contains the most salient image structure) --> detection

4.  aggregate the recognition and detection scores to predict the class of image(image level supervision)

Compared with other method

1. MIL: Use the appearance model itself to perform region selection

WSDDN: detection branch is independent of recognition branch

2. Bilinear architecture: two streams are symmetric

WSDDN: detection branch is explicitly designed

Method

1. Pre-trained network

2. Weakly supervised deep detection network

 

(1) Region level descriptor:


Region proposal: SSW, EB

(2) Classification data stream: fc + softmax

 

(3) Detection data stream: fc + softmax(differently defined)

 

(4) Combined region scores and detection

Final score of each region:

 

Then rank regions for each class independently.

Then apply nms(0.4)

(5) Image-level classification scores

Image level class score:


(yc in (0, 1))

Softmax is not applied because one image can have multiple label

3. Training WSDDN

A collection of images xi, i=1, 2, … , n

Image level labels yi∈ {-1, 1}C

 

4. Spatial regulariser

Penalize the feature map discrepancies between the highest scoring region and the regions with at least 60% IoU during training.

 

Experiments

CorLoc: the percentage of images that contain at least one instance of the target object class for which the most confident detected bounding box overlaps by at least 0.5 with one of these instances.

 

Problem: (1) group multiple object instances with a single bounding box

(2)focus on parts rather than the whole object

 

Result:

 

 






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值