<leetcode>617. Merge Two Binary Trees

本文详细解析了二叉树合并算法,介绍了如何将两棵二叉树按特定规则进行节点值叠加及子树合并的过程,并附带示例说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

617. Merge Two Binary Trees

Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not.

You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.

Example 1:

Input: 
	Tree 1                     Tree 2                  
          1                         2                             
         / \                       / \                            
        3   2                     1   3                        
       /                           \   \                      
      5                             4   7                  
Output: 
Merged tree:
	     3
	    / \
	   4   5
	  / \   \ 
	 5   4   7

Note: The merging process must start from the root nodes of both trees.

 一开始的时候对题目的理解不清楚,不知道题目在说什么,就搁置了很久才写

今天又仔细看了一下题目,具体的意思就是在两个二叉树合并的过程中,相同层级的结点合并(值相加),对于一棵树对应层级如果一个有左子树,一个没有,就在最终的树种添加这个左子树;右子树同理。

遍历整个树时,中序,后序都无所谓的。

我用的是都添加到t1子树上,直接返回t1。


/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
        if(t1==null&&t2==null) return null;
        if(t1==null&&t2!=null) return t2;
        if(t1!=null&&t2==null) return t1;
        if(t1!=null&&t2!=null){
            t1.val = t1.val+t2.val;
            t1.left = mergeTrees(t1.left,t2.left);
            t1.right = mergeTrees(t1.right,t2.right);
        }
        return t1;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值