1.首先,找到linux服务器中tensorflow-gpu的安装位置
- 1
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
或者
在找到tensorflow-gpu地址后,在改地址目录下寻找tensorboard/tensorboard.py路径。在后面对rensorboard的可视化中会用到该路径
2.在网络训练的代码中(train.py):log_filepath =
'/tmp/keras_log'
model.compile(loss='categorical_crossentropy',
optimizer=SGD(lr=0.001),
metrics=['accuracy'])
tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, write_images=1,
histogram_freq=1)
# 设置log的存储位置,将网络权值以图片格式保持在tensorboard中显示,设置每一个周期计算一次网络的
#权值,每层输出值的分布直方图
cbks = [tb_cb] history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1,
callbacks=cbks, validation_data=(X_test, Y_test))
3.重新开启一个新的终端,输入命令,使得train_history可视化:
python /home/bids/.local/lib/python2.7/site-packages/tensorboard/tensorboard.py
--logdir='/tmp/keras_log'
Starting
TensorBoard 54
at
http://bids:6006(Press
CTRL+C to
quit)
右键上面的网址打开链接即可。
转载参考来自blog:http://blog.youkuaiyun.com/jiandanjinxin/article/details/77155565