HDU3046 Pleasant sheep and big big wolf

Pleasant sheep and big big wolf
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2928 Accepted Submission(s): 1199

Problem Description
In ZJNU, there is a well-known prairie. And it attracts pleasant sheep and his companions to have a holiday. Big big wolf and his families know about this, and quietly hid in the big lawn. As ZJNU ACM/ICPC team, we have an obligation to protect pleasant sheep and his companions to free from being disturbed by big big wolf. We decided to build a number of unit fence whose length is 1. Any wolf and sheep can not cross the fence. Of course, one grid can only contain an animal.
Now, we ask to place the minimum fences to let pleasant sheep and his Companions to free from being disturbed by big big wolf and his companions.

Input
There are many cases.
For every case:

N and M(N,M<=200)
then N*M matrix:
0 is empty, and 1 is pleasant sheep and his companions, 2 is big big wolf and his companions.

Output
For every case:

First line output “Case p:”, p is the p-th case;
The second line is the answer.

Sample Input
4 6
1 0 0 1 0 0
0 1 1 0 0 0
2 0 0 0 0 0
0 2 0 1 1 0

Sample Output
Case 1:
4

把羊和狼分割,计算最小割
1是羊,2是狼,0是墙
用dinic算法,先bfs建立层次图,然后dfs找出增广路,直到没有增广为止,建图用邻接表

#include <cstring>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <queue>
#define RE(x) (x)^1
#define INF 0x3fffffff
#define MAXN 205
using namespace std;

int N, M, G[MAXN][MAXN], dis[MAXN*MAXN];

int dir[2][2] = {0, 1, 1, 0};

int idx, head[MAXN*MAXN];

const int sink = MAXN*MAXN-1, source = MAXN*MAXN-2;

struct Edge
{
    int v, cap, next;
} e[MAXN*MAXN*4];
void init()
{
    idx = 0;
    memset(head, 0xff, sizeof (head));
}
int to(int x, int y)
{
    return (x-1)*M+(y-1);
}

void insert(int u,int v,int w)
{
    e[idx].v=v,e[idx].cap=w;
    e[idx].next=head[u];
    head[u]=idx;
    idx++;

}
bool judge(int x, int y)//判断越界
{
    if (x < 1 || x > N || y < 1 || y > M)
    {
        return false;
    }
    return true;
}


void check(int x, int y)
{
    int xx, yy;
    if (G[x][y] == 1)
    {
        insert(to(x, y), sink, INF);
        insert(sink, to(x, y), 0);
    }
    else if (G[x][y] == 2)
    {
        insert(source, to(x, y), INF);
        insert(to(x, y), source, 0);
    }
    for (int i = 0; i < 2; ++i)
    {
        xx = x + dir[i][0], yy = y + dir[i][1];
        if (judge(xx, yy))
        {
            insert(to(x, y), to(xx, yy), 1);
            insert(to(xx, yy), to(x, y), 1);
        }
    }
}

bool bfs()//寻找深度图,dis代表层次
{
    int pos;
    queue<int>q;
    memset(dis, 0xff, sizeof (dis));
    dis[source] = 0;
    q.push(source);
    while (!q.empty())
    {
        pos = q.front();
        q.pop();
        for (int i = head[pos]; i != -1; i = e[i].next)
        {
            if (dis[e[i].v] == -1 && e[i].cap > 0)
            {
                dis[e[i].v] = dis[pos]+1;
                q.push(e[i].v);
            }
        }
    }
    //return dis[sink] != -1;
    if(dis[sink]!=-1)
    return 1;
    else
    return 0;
}


int dfs(int u,int flow)
{
    if(u==sink)
    return flow;
    int sf=0,fs;
    for(int i=head[u];i!=-1;i=e[i].next)
    {
        if(dis[u]+1==dis[e[i].v]&&e[i].cap>0&&(fs=dfs(e[i].v,min(flow-sf,e[i].cap))))
        {
            e[i].cap-=fs;
            e[i^1].cap+=fs;
            sf+=fs;
            if(sf==flow)
            return flow;
        }
    }
    if(!sf)
    dis[u]=-1;
    return sf;
}
int dinic()
{
    int ans = 0;
    while (bfs())
    {
        ans += dfs(source, INF);
    }
    return ans;
}

int main()
{
    int ca = 0;
    while (scanf("%d %d", &N, &M) == 2)
    {
        init();
        for (int i = 1; i <= N; ++i)
        {
            for (int j = 1; j <= M; ++j)
            {
                scanf("%d", &G[i][j]);
                //    getint(G[i][j]);
            }
        }
        for (int i = 1; i <= N; ++i)
        {
            for (int j = 1; j <= M; ++j)
            {
                check(i, j);
            }
        }
        printf("Case %d:\n%d\n", ++ca, dinic());
    }
    return 0;
}
资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 HttpServletRequestWrapper 是 Java Servlet API 中的一个工具类,位于 javax.servlet.http 包中,用于对 HttpServletRequest 对象进行封装,从而在 Web 应用中实现对 HTTP 请求的拦截、修改或增强等功能。通过继承该类并覆盖相关方法,开发者可以轻松地自定义请求处理逻辑,例如修改请求参数、添加请求头、记录日志等。 参数过滤:在请求到达处理器之前,可以对请求参数进行检查或修改,例如去除 URL 编码、过滤敏感信息或进行安全检查。 请求头操作:可以修改或添加请求头,比如设置自定义的 Content-Type 或添加认证信息。 请求属性扩展:在原始请求的基础上添加自定义属性,供后续处理使用。 日志记录:在处理请求前记录请求信息,如 URL、参数、请求头等,便于调试和监控。 跨域支持:通过添加 CORS 相关的响应头,允许来自不同源的请求。 HttpServletRequestWrapper 通过继承 HttpServletRequest 接口并重写其方法来实现功能。开发者可以在重写的方法中添加自定义逻辑,例如在获取参数时进行过滤,或在读取请求体时进行解密。当调用这些方法时,实际上是调用了包装器中的方法,从而实现了对原始请求的修改或增强。 以下是一个简单的示例,展示如何创建一个用于过滤请求参数的包装器: 在 doFilter 方法中,可以使用 CustomRequestWrapper 包装原始请求: 这样,每当调用 getParameterValues 方法时,都会先经过自定义的过滤逻辑。 HttpServletRequestWrapper 是 Java Web 开发中一个强大的工具,它提供了灵活的扩展性,允许开发者
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值