嵌入式视觉技术

嵌入式视觉技术结合了嵌入式系统与计算机视觉,广泛应用于工业自动化、智能交通、医疗影像等领域。通过低功耗、高性能的硬件平台,实现图像采集、处理、分析等功能,为设备提供智能化的眼睛。这种技术的关键在于优化算法与硬件资源的匹配,以实现高效、实时的视觉处理。随着物联网和边缘计算的发展,嵌入式视觉在物联网设备中扮演着越来越重要的角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      随着嵌入式技术的发展,嵌入式视觉技术也越来越比较重视,多年前。人们对嵌入式视觉技术的研究还是很模糊的,而在嵌入式视觉技术高度专业化应用的今天。越来越多的新兴工业为视觉应用找到了用武之地。那么就让我们谈谈如何使用嵌入式视觉技术、采用嵌入式视觉技术的理由以及近期哪些应用最有希望采用嵌入式视觉技术。



   更强处理能力

  根据定义,嵌入式视觉系统实际上涵盖了执行图像信号处理算法或视觉系统控制软件的任何设备或系统。智能视觉系统中的关键部分是进行实时高清数字视频流处理的高性能计算引擎、大容量固态存储、智能摄像头或传感器以及高级分析算法。这些系统中的处理器可以执行图像采集、镜头校正、图像预处理和分割、目标分析以及各种启发式(heuristics)功能。嵌入式视觉系统设计工程师采用各种处理器,包括专为视觉应用设计的通用CPU、图象处理单元(GPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)和专用标准产品(ASSP)。上述处理器架构具备明显的优势和短板。在许多情况下,设计工程师将多种处理器整合到一个异构计算环境中。有时候,处理器则被集成到一个组件中。此外,一些处理器使用专用硬件来尽可能实现最高的视觉算法性能。诸如FPGA之类的可编程平台为设计工程师提供了高度并行的计算密集型应用架构以及用于I/O扩展等其他应用的资源。

  在摄像头方面,嵌入式视觉系统设计工程师使用模拟摄像头和数字图像传感器。数字图像传感器通常是需要可见光环境的CCD或CMOS传感器阵列。嵌入式视觉系统也可用于感测其他数据,如红外、超声波、雷达和激光雷达。

  越来越多的设计工程师开始转向采用摄像头或各种传感器的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞哥网络运营

谢谢打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值