STM32TIM触发ADC

本文介绍了STM32中断类型,如TIMx_TRGO、TIM2_CC1~4、TIM_IT_Update等。还详细阐述了TIM触发ADC原理,以STM32 ADC常规通道为例,给出配置代码,强调使用TIM2的CC2触发ADC需将定时器配置为比较输出PWM模式,且TIMx_CHx输出上升沿才触发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

STM32中断类型

  • TIMx_TRGO:应该就是直接由外部控制定时器,定时器再控制ADC,实现cpu 0干预的adc触发。
  • TIM2_CC1~4:所产生的各种事件,可能是溢出,可能是比较成功,可能是更新
  • TIM_IT_Update:更新中断,计数器向上溢出/向下溢出,计数器初始化

TIM触发ADC原理

STM32关于使用定时器触发ADC转换的解决办法和详细说明

本人在使用STM32上的TIM2_CC2触发ADC转换的时候,发现始终调不出来,在网上找到了一些有价值的参考信息,然后在不懈的寻根究底下,终于找到问题的原因,废话少说,进入正题:

以STM32 ADC的常规通道为例(注入通道类似):

在这里插入图片描述
在这里插入图片描述

如上图,STM32 ADC的常规通道可以由以上6个信号触发任何一个,我们以使用TIM2_CH2触发ADC1,独立模式,每次仅测一条通道,则ADC的配置如下:(以下代码使用STM32固件库V3.5)

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;//下面详细说明

TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//TIM_OutputState_Disable;

TIM_OCInitStructure.TIM_Pulse = 5000;

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;//如果是PWM1要为Low,PWM2则为High

TIM_OC2Init(TIM2, & TIM_OCInitStructure);

TIM_Cmd(TIM2, ENABLE);

TIM_InternalClockConfig(TIM2);

TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable);

TIM_UpdateDisableConfig(TIM2, DISABLE);

还是来引用参考手册的原图:(截图引自通用定时器一章)

在这里插入图片描述

上图中红蓝两个框的中间部分,顶上是TIM2的自动重装寄存器和计数器寄存器,下面4个Capture/compare x register是TIM2_CCRx寄存器。

要使用TIM2的CC2来触发ADC,看懂这个图是关键。

首先要明确,这个图的红框部分和蓝框部分,是不会同时工作的,红框是配置为输入捕捉模式才能生效,蓝框是配置为输出比较模式才能生效,通过配置TIM2_CCMR1_CC2S来控制TIM2_CC2究竟是处于哪种模式(CC2S=0为比较输出,>0为输入捕捉),请注意:这里蓝框的其中一个输出是TIMx_CH2,而TIM2_CH2又是ADC规则通道的触发源,也就是说如果要触发ADC,则需要每次比较匹配时,在TIM2_CH2上产生一次上升沿。

那么我们首先需要操作蓝框内的最左边部分也就是OC2REF,要使比较匹配时发生一次上升沿,(以定时器向上计数为例,)就需要在TIM2_CNT<TIM2_CCR2时,通道2为低电平,TIM2_CNT>=TIM2_CCR2时,通道2为高电平。

从参考手册定时器一章4.7节的CCMR1寄存器中的0C2M[2:0]的介绍可以看出来,只有在PWM模式才能满足上面所说的条件,任何单纯的冻结、配置OC2REF为高或者为低、强制OC2REF为高或者为低,都无法满足要求,不少同学就是死在这个上面,以为是配置TIMING模式,实际上这样根本无法改变OC2REF的电平,就无从触发ADC了。

CCMR1_CCxS(x为1、2、3、4,决定是哪个通道)是选择为捕捉输入还是比较输出,这里我们需要配置为输出。

以上两段配置程序,可以以100ms的周期驱动AD转换一次,不再需要使用TIM和ADC中断资源。

总结:想要使用STM32的定时器触发ADC,必须将定时器配置为比较输出PWM模式,并且一定要注意TIMx_CHx输出上升沿才出发,若是在比较匹配的瞬时产生的不是上升沿而是下降沿,那么就不一定是在比较匹配的瞬间触发ADC了,特别是在类似于电机控制的应用中要注意这一点。

你可以使用STM32的定时器(TIM)和DMA来触发ADC的转换和数据传输。下面是一个简单的示例代码,演示了如何使用TIM触发ADC和DMA进行采样: ```c #include "stm32f4xx.h" #define ADC_BUFFER_SIZE 100 uint16_t adc_buffer[ADC_BUFFER_SIZE]; void TIM_Configuration(void) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Period = 1000; // 定时器周期为1000(在72MHz下,定时器时钟为72MHz/1000 = 72kHz) TIM_TimeBaseStructure.TIM_Prescaler = 71; // 预分频器为71(定时器时钟为72kHz/72 = 1kHz) TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_SelectOutputTrigger(TIM2, TIM_TRGOSource_Update); // 选择更新事件作为触发信号 TIM_Cmd(TIM2, ENABLE); } void ADC_DMA_Configuration(void) { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); DMA_InitTypeDef DMA_InitStructure; DMA_InitStructure.DMA_Channel = DMA_Channel_0; DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&adc_buffer; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; DMA_InitStructure.DMA_BufferSize = ADC_BUFFER_SIZE; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA2_Stream0, &DMA_InitStructure); DMA_Cmd(DMA2_Stream0, ENABLE); ADC_CommonInitTypeDef ADC_CommonInitStructure; ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1; ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStructure); ADC_InitTypeDef ADC_InitStructure; ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; // 连续转换模式 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_TRGO; // 使用TIM2触发信号 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_3Cycles); // 配置ADC通道0 ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE); ADC_DMACmd(ADC1, ENABLE); ADC_Cmd(ADC1, ENABLE); ADC_SoftwareStartConv(ADC1); } int main(void) { TIM_Configuration(); ADC_DMA_Configuration(); while (1) { // 程序主循环 } } ``` 上述代码中,我们使用TIM2定时器的更新事件作为ADC触发信号,并使用DMA2的Stream 0将ADC转换结果传输到adc_buffer数组中。请根据你的需求进行修改和适配。注意,此示例代码基于STM32F4系列微控制器,并使用了相应的库函数。如果你使用的是其他型号的STM32微控制器,请根据其参考手册和库函数进行相应的修改和调整。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值