S
o
u
c
e
:
Souce:
Souce: Egyptian Collegiate Programming Contest 2017 (ACM ECPC 2017)
P
r
o
b
l
e
m
:
Problem:
Problem:
给一颗1e5的树。树上路径定义为两点之间所有连边的边权的乘积。1<=边权<=1e5。
问有多少条路径刚好是两个不同质数的乘积。
I
d
e
a
:
Idea:
Idea:
由于1很特殊,对所有1相连的点都用并查集缩点,重新建树,发现答案只有两种,相邻两条边为不同素数的,或者一条边本身就是两个素数乘积的。
C
o
d
e
:
Code:
Code:
#include<bits/stdc++.h>
using namespace std;
#define I inline
#define fi first
#define se second
#define pb push_back
#define ALL(X) (X).begin(), (X).end()
#define CLR(A, X) memset(A, X, sizeof(A))
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
const int N = 1e5+10;
bool prime[N], ok[N];
void init() {
for(int i = 2; i < N; i++) {
prime[i] = !prime[i];
if(prime[i]) for(int j = i+i; j < N; j += i) prime[j] = 1;
else {
int m = sqrt(i+0.5);
for(int j = 2; j <= m; j++) if(prime[j] && i%j==0) {
if(prime[i/j] && i!=i/j) { ok[i] = 1; break; }
}
}
}
}
int p[N], sz[N], cnt[N];
struct Edge { int u, v, w; };
vector<Edge> e;
vector<PII> G[N];
int find(int x) { return x==p[x]?x:p[x]=find(p[x]); }
I void work() {
int n; scanf("%d", &n);
for(int i = 1; i <= n; i++) G[i].clear(), p[i] = i, sz[i] = 1;
e.clear();
for(int i = 1; i < n; i++) {
int u, v, w; scanf("%d%d%d", &u, &v, &w);
if(w == 1) {
u = find(u); v = find(v);
p[v] = u; sz[u] += sz[v];
}
else e.pb({u, v, w});
}
for(Edge t:e) {
int u = find(t.u), v = find(t.v), w = t.w;
G[u].pb({v, w}); G[v].pb({u, w});
}
LL ans = 0;
for(int i = 1; i <= n; i++) {
LL sum = 0;
for(PII t:G[i]) {
int v = t.fi, w = t.se;
if(ok[w]) ans += 1LL*sz[i]*sz[v];
else if(prime[w]) {
sum += sz[v];
cnt[w] += sz[v];
ans += 2LL*(sum-cnt[w])*sz[v];
}
}
for(PII t:G[i]) {
int v = t.fi, w = t.se;
if(prime[w]) cnt[w] -= sz[v];
}
}
static int cas = 0;
printf("Case %d: %lld\n", ++cas, ans/2);
}
int main() {
if(fopen("evaluations.in", "r"))
freopen("evaluations.in", "r", stdin);
init();
int X; scanf("%d", &X);
while(X--) work();
return 0;
}