Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizesthe sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input: [ [1,3,1], [1,5,1], [4,2,1] ] Output: 7 Explanation: Because the path 1→3→1→1→1 minimizes the sum.
题目:从左上角走到右下角,找一条经过路径,使得数字和最小。
思路:动态规划。
因为只能往右走,往下走,所以每个点的值等于左边和上边的最小值+当前值
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<vector<int>> sum(m, vector<int>(n,0));
sum[0][0] = grid[0][0];
for(int i=1;i<m;i++)
sum[i][0] = sum[i-1][0]+grid[i][0];//初始化左边界
for(int j=1;j<n;j++)
sum[0][j] = sum[0][j-1]+grid[0][j];//初始化上边界
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
sum[i][j] = min(sum[i-1][j],sum[i][j-1])+grid[i][j];
return sum[m-1][n-1];
}
};