
快速矩阵幂
Dijkstra__
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
HDU 1757 A Simple Math Problem
Lele now is thinking about a simple function f(x). If x If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10); And ai(0Now, I will give a0 ~ a9 and two positive int原创 2016-12-06 10:33:32 · 1059 阅读 · 0 评论 -
hdu 1757
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。 Input数据的第一行是一个T,表示有T组数据。 每组数据的第一行有n(2 Output对应每组数据,输出Tr(A^k)%9973。Sample Input22 21 00 13 999999991 2 34 5 67 8 9Sample Outpu原创 2016-12-07 11:38:35 · 1147 阅读 · 0 评论 -
矩阵快速幂
矩阵 快速幂矩阵的快速幂是用来高效地计算矩阵的高次方的。将朴素的o(n)的时间复杂度,降到log(n)。这里先对原理(主要运用了矩阵乘法的结合律)做下简单形象的介绍:一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次幂。但做下简单的改进就能减少连乘的次数,方法如下:把n个矩阵进行两两分组,比如:A*A*A*A*A*A => (A*转载 2017-07-23 17:13:50 · 924 阅读 · 0 评论 -
快速幂,矩阵快速幂
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下快速乘法通常有两类应用:一、整数的运算,计算(a*b) mod c 二、矩阵快速乘法一、整数运算:(快速乘法、快速幂)先说明一下基本的数学常识:(a*b) mod c == ( (a mod c) * (b mod c) ) mod c //这转载 2017-07-23 17:15:34 · 1058 阅读 · 0 评论 -
矩阵快速幂
矩阵 快速幂矩阵的快速幂是用来高效地计算矩阵的高次方的。将朴素的o(n)的时间复杂度,降到log(n)。这里先对原理(主要运用了矩阵乘法的结合律)做下简单形象的介绍:一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次幂。但做下简单的改进就能减少连乘的次数,方法如下:把n个矩阵进行两两分组,比如:A*A*A*A*A*A => (A*A)*(A*A)*(A*转载 2017-07-26 13:53:45 · 998 阅读 · 0 评论