第一次看见这个问题是 《算法导论》Chapter 15 动态规划课后思考题15-1的题目。
本文主要参考:http://www.geeksforgeeks.org/find-longest-path-directed-acyclic-graph/
问题描述
给定一个有向图(Directed Acyclic Graph)以及一个起点s,求该图中s点到其余所有点的最长路径。
题解
正如算法导论中提到的那样,给定有向图的最长路径问题并不如有向图最短路径那么简单,因为它不具备 最优子结构(Optimal Substructure Property)。实际上,该问题是NP-Hard问题。
但是,有向无环图的最长路径问题确有一个线性时间的解。这种思想和解决DAG最短路径问题相似,采用拓扑排序(Topological Sorting )。
我们将求得DAG的拓扑序列,那么对于拓扑序列,就可以用动态规划来处理。由拓扑序列的性质可以断定在拓扑序列该问题具有最优子结构。(当前问题的解包含子问题的解)
我们定义dist[v]为起点s到v的最长路径,那么递归关系为:
dist[v] = max{dist[pre] + weight(pre->v)},pre是一条指向v的边的起点
这里我们从左到右遍历拓扑序列,对于当前点i,更新其邻接点的dist。
需要强调的是这里的拓扑排序的实现方式是基于Dfs,需要掌握。
代码
#include <iostream>
#include <vector>
#include <stack>
#include <map>
#include <cstring>
#include <string>
#include <algorithm>
//#include <cmath>
#include <utility>
#include <unordered_map>
#include <set>
#include <queue>