spark广播,累加器

累加器

import org.apache.spark.Accumulator;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.broadcast.Broadcast;
import scala.Tuple2;

import java.util.ArrayList;
import java.util.List;

/**
 * Created by hadoop on 17-11-2.
 * 迭代器,其实就是用来在excutor上计算后能够叠加的值,在节点上不能读,只能写
 */
public class AccumulatorDemo {
    public static void main(String[]args){
        SparkConf conf = new SparkConf()
                .setAppName(" Accumulator")
                .setMaster("local[4]")
                .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
        conf.set("spark.defaultparallelism","4");

        JavaSparkContext sc = new JavaSparkContext(conf);

        System.out.println("star=========");

        Person []persons=new Person[1000];
        //广播对象
        Broadcast<Person[]> person_br=sc.broadcast(persons);
        //累加器
        Accumulator<Integer> count=sc.accumulator(0);
        //
        List<String> data1=new ArrayList<String>();
        data1.add("banala");
        data1.add("orage");
        data1.add("chiken");
        data1.add("beef");
        data1.add("");
        data1.add("egg");
        data1.add("");

        JavaRDD<String> rdd1=sc.parallelize(data1,2);

        rdd1.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                long id=Thread.currentThread().getId();
                System.out.println("s:"+s+"in thread:"+id);
                if(s.equals("")){
                    Person p=new Person();
                    int x=p.getNumber();
                    x++;
                    p.setNumber(x);
                    //count.add(1);

                }
                return new Tuple2<String,Integer>(s,1);
            }
        }).collect();
        //System.out.println(count.value());
        Person p1=new Person();
        System.out.println(p1.getNumber());
        sc.stop();




    }

   static class Person{
    static int number=0;

        public int getNumber() {
            return number;
        }

        public void setNumber(int number) {
            this.number = number;
        }
    }
}




广播

import org.apache.spark.Accumulator;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.broadcast.Broadcast;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;

import java.util.Arrays;
import java.util.List;

/**
 * Created by hadoop on 17-11-3.
 * 广播和计数需要一个action
 */
public class BroadCastDemo {
    //创建一个list的广播变量
    private static volatile Broadcast<List<String>> broadcasLIst=null;
    //创建一个计数器
    private static volatile Accumulator<Integer> accumulator=null;

    public static void main(String[]args) throws InterruptedException {
        SparkConf conf = new SparkConf()
                .setAppName("Broadcast")
                .setMaster("local[4]")
                .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");

        System.out.println("star=========");
        //5s钟处理一次
        JavaStreamingContext jsc=new JavaStreamingContext(conf, Durations.seconds(5));
        broadcasLIst=jsc.sparkContext().broadcast(Arrays.asList("hadoop","mahout","hive"));


        accumulator=jsc.sparkContext().accumulator(0,"OnlineBlackListCounter");

        JavaReceiverInputDStream<String>lines=jsc.socketTextStream("localhost",9999);

        JavaPairDStream<String,Integer> pairs=lines.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                return new Tuple2<String, Integer>(s,1);
            }
        });

        JavaPairDStream<String,Integer> wordcount=pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer integer, Integer integer2) throws Exception {
                return integer+integer2;
            }
        });


//        wordcount.foreach(new Function2<JavaPairRDD<String,Integer>,Time,Void>(){
//            @Override
//            public Void call(JavaPairRDD<String,Integer>rdd,Time time)throws Exception {
//                    rdd.filter(new Function<Tuple2<String, Integer>, Boolean>() {
//                        @Override
//                        public Boolean call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
//                            if (broadcasLIst.value().contains(stringIntegerTuple2._1)) {
//                                accumulator.add(stringIntegerTuple2._2);
//                                return false;
//                            } else {
//                                return true;
//                            }
//
//                        }
//                    }).collect();
//                    System.out.println("广播变量里的值"+broadcasLIst.value());
//                    System.out.println("累加器里的值"+accumulator.value());
//                return null;
//                }
//        });
         jsc.start();
         jsc.awaitTermination();
         jsc.close();

    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值