Apache Flink连载(二十四):Apache Flink术语

本文详细介绍了Apache Flink的核心概念,包括Application与Job、DataFlow数据流图、Subtask子任务与并行度以及Operator Chains算子链。Flink将批处理视为流处理的特例,其数据流分为无界流和有界流。一个Flink Application由Source、Transformation和Sink组成,其中并行度可通过Operator、Execution Environment、Client和System层面设置。算子链能优化数据处理,减少延迟和提高吞吐量。在适当情况下,可通过禁用或定制算子链来优化性能。

 

🏡 个人主页IT贫道-优快云博客

  🚩 私聊博主:私聊博主加WX好友,获取更多资料哦~

 🔔 博主个人B栈地址:豹哥教你学编程的个人空间-豹哥教你学编程个人主页-哔哩哔哩视频


目录

1. Application与Job

2. DataFlow数据流图

​​​​​​​3. Subtask子任务与并行度

​​​​​​​​​​​​​​4. Operator Chains 算子链


Flink计算框架可以处理批数据也可以处理流式数据,Flink将批处理看成是流处理的一个特例,认为数据原本产生就是实时的数据流,这种数据叫做无界流(unbounded stream),无界流是持续不断的产生没有边界,批数据只是无界流中的一部分叫做有界流(bounded stream),针对无界流数据处理叫做实时处理,这种程序一般是7*24不间断运行的;针对有界流数据处理叫做批处理,这种程序处理完当前批数据就停止。下面我们结合一些代码介绍Flink中的一些重要的名词术语。

1. Application与Job

无论处理批数据还是处理流数据我们都可以使用Flink提供好的Operator(算子)来转换处理数据,一个完整的Flink程序代码叫做一个Flink Application,像前面章节我们编写的Flink读取Socket数据实时统计WordCount代码就是一个完整的Flink Application:

/**
 * 读取Socket数据进行实时WordCount统计
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT贫道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值