NFActor

博客介绍了一个在C#中实现Actor模型的开源项目,给出了项目的GitHub链接https://github.com/ketoo/NFActor ,还提供了相关网站链接http://www.noahframe.com 。
hspice仿真设计* 0.35um Logic Salicide Dual-gate Process with PLDD structure - THIN gate pMOS transistor .model pmos_3p3 PMOS +Level= 53 * * GENERAL PARAMETERS * *+lmin=3.5e-7 lmax=1.0e-5 wmin=4.0e-7 wmax=2.0e-5 +Tnom=25.0 +version =3.2 hspver=98.2 paramchk=1 *+Tox= 8.69E-09 *+Toxm= 8.69E-09 +Tox= toxp_tn +Toxm= toxp_tn +Xj= 1.0000000E-07 +Nch= 6.9300000E+16 +lln= 1.0000000 +lwn= 0.9690366 +wln= 1.1131999 +wwn= 0.1000000 *+lint= -2.5225001E-08 +lint= lintp_tn +ll= 0.00 +lw= -3.5000000E-15 +lwl= 2.5025000E-20 *+wint= 4.9900000E-08 +wint= wintp_tn +wl= 5.4900000E-14 +ww= -3.7500000E-09 +wwl= -1.2000000E-14 +Mobmod= 1 +binunit= 2 +Dwg= -2.0000000E-08 +Dwb= 0.00 wDwb= 6.0000000E-15 pDwb= -5.0000000E-22 * DIODE PARAMETERS +ACM= 12 +ldif=0.00 +hdif=3.5e-7 +rd= 0 +rs= 0 +rsc= 0 +rdc= 0 +calcacm= 1 +rsh= 0 * * THRESHOLD VOLTAGE PARAMETERS * *+Vth0= -0.8370000 +Vth0= vthop_tn +K1= 0.4883000 lK1= 9.9999990E-10 +K2= -1.0000000E-04 +K3= 0.7100000 +Dvt0= 2.4753001 +Dvt1= 0.3918000 +Dvt2= 1.5000000E-02 +Dvt0w= -0.5864000 +Dvt1w= 5.7000000E+05 +Dvt2w= -5.0000000E-02 +Nlx= 1.9200000E-07 +W0= 0.00 +K3b= 0.2240000 +Ngate= 1.0000000E+30 +Vfb= -0.4029894 * * MOBILITY PARAMETERS * +Vsat= 2.3000000E+05 pVsat= 3.5000000E-09 +Ua= 3.1400000E-09 +Ub= 6.9500000E-19 +Uc= 1.0700000E-10 +Rdsw= 1.7900000E+03 lRdsw= -2.2000000E-04 +Prwb= 0.1194000 +Prwg= 0.00 +Wr= 0.9209000 +U0= 2.7700000E-02 +A0= 1.5649250 +Keta= -1.6677311E-02 +A1= 0.00 +A2= 0.2960000 +Ags= 0.3275000 lAgs= 1.5300000E-07 +B0= 5.1200000E-07 +B1= 6.5000000E-07 * * SUBTHRESHOLD CURRENT PARAMETERS * +Voff= -0.1239000 +NFactor= 1.0000000 pNFactor= -3.5000000E-14 +Cit= 3.6750000E-04 +Cdsc= 9.3120000E-04 +Cdscb= 2.8855001E-04 +Cdscd= 0.00 +Eta0= 7.9114790E-02 lEta0= 4.1000000E-08 pEta0= -1.3000000E-14 +Etab= 0.00 +Dsub= 0.7003863 * * ROUT PARAMETERS * +Pclm= 3.2580400 +Pdiblc1= 1.5564860E-02 +Pdiblc2= 2.6037599E-04 +Pdiblcb= -0.1487453 +Drout= 0.1666364 +Pscbe1= 5.8755800E+08 +Pscbe2= 1.0000000E-08 +Pvag= 3.6609710 +Delta= 1.0000000E-02 +Alpha0= 1.9999997E-09 +Alpha1= 0.2700000 wAlpha1= -6.0000000E-08 +Beta0= 28.7999990 lBeta0= -1.1000000E-06 * * TEMPERATURE EFFECTS PARAMETERS * +kt1= -0.5600000 pkt1= 1.9999920E-15 +kt2= -4.6000000E-02 +At= 1.3600000E+05 pAt= -2.0000002E-09 +Ute= -1.4900000 lUte= 1.0000000E-07 pUte= -1.0000000E-14 +Ua1= 2.5800000E-09 pUa1= -5.4955000E-23 +Ub1= -5.6795000E-18 lUb1= -9.0000000E-25 wUb1= 3.3200000E-25 pUb1= 1.2999999E-31 +Uc1= -5.4000000E-10 lUc1= 4.4994500E-17 wUc1= 1.1000000E-16 pUc1= -9.9100000E-24 +Kt1l= 0.00 +Prt= 0.00 wPrt= 4.5000000E-04 pPrt= -5.0000000E-11 * * CAPACITANCE PARAMETERS * +Cj= 1.22954E-03 +Mj= 0.4149161 +Pb= 0.8488845 +Cjsw= 3.63341E-10 +Mjsw= 0.2938261 +Pbsw= 0.6648861 +Tcj= 9.489684E-04 +Tcjsw= 7.016366E-04 +Tpb= 1.612079E-03 +Tpbsw= 1.115389E-03 +JS=2.18e-7 +JSW=1.00e-13 +Nj=1.0 +Xti=3.0 *+Cgdo=1.05E-10 *+Cgso=1.05E-10 +Cgdo=cgdop_tn +Cgso=cgsop_tn +Cgbo=1.0E-13 +Capmod= 3 +NQSMOD= 0 +Elm= 5 +Xpart= 0 +cgsl= 1.50000E-10 +cgdl= 1.50000E-10 +ckappa= 0.6000000 +cf= 0.00 +clc= 1.0000000E-07 +cle= 0.6000000 +Dlc= -5.999996E-09 +Dwc= 4.990E-08 +Vfbcv= -0.2912 +Llc= 0 +Lwc= 0 +Wlc= 0 +Wwc= 0 +Lwlc= 0 +Wwlc= 0 +Acde= 0.5 +Moin= 15 +Noff= 2 +Voffcv= -0.03 * +noimod= 2 +NoiA= 3.88517E+17 +NoiB= 8092.033 +NoiC= 4.45351E-13 +Ef= 1 +Em= 41000000 * *------------------------------------------------------------------------------- * 0.35um Logic Salicide Dual-gate Process with PLDD structure - THIN gate nMOS transistor .model nmos_3p3 NMOS +Level= 53 * * GENERAL PARAMETERS * *+lmin=3.5e-7 lmax=1.0e-5 wmin=4.0e-7 wmax=2.0e-5 +Tnom=25.0 +version =3.2 hspver=98.2 paramchk=1 *+Tox= 7.69E-09 *+Toxm= 7.69E-09 +Tox= toxn_tn +Toxm= toxn_tn +Xj= 1.0000000E-07 +Nch= 2.0857000E+17 +lln= 1.0000000 +lwn= 1.0000000 +wln= 1.0000000 +wwn= 0.2296553 *+lint= 4.1240000E-08 +lint= lintn_tn +ll= 7.4999990E-15 +lw= 0.00 +lwl= 3.5036500E-21 *+wint= 6.3000000E-08 +wint= wintn_tn +wl= 0.00 +ww= -4.7510910E-10 +wwl= 0.00 +Mobmod= 1 +binunit= 2 +Dwg= 3.9968030E-15 +Dwb= 9.0300000E-09 * DIODE PARAMETERS +ACM= 12 +ldif=0.00 +hdif=3.5e-7 +rd= 0 +rs= 0 +rsc= 0 +rdc= 0 +calcacm= 1 +rsh= 0 * * THRESHOLD VOLTAGE PARAMETERS * *+Vth0= 0.6053000 +Vth0= vthon_tn +K1= 0.6780000 +K2= 0.00 +K3= 8.2500000E-06 +Dvt0= 4.95 pDvt0=-4e-14 +Dvt1= 0.7868235 +Dvt2= -5.0000000E-02 +Dvt0w= 4.3137080E-17 +Dvt1w= 7.0232080E+05 +Dvt2w= -5.0000000E-02 +Nlx= 1.2477851E-07 +W0= 8.6645000E-06 +K3b= 21.0000000 +Ngate= 1.0000000E+30 +Vfb= -0.8771217 * * MOBILITY PARAMETERS * +Vsat= 1.0079E+05 wVsat= 2.2500001E-02 +Ua= -4.7621650E-10 +Ub= 2.5418619E-18 pUb= -1.8000001E-32 +Uc= 7.8748400E-11 pUc= -3.0000002E-24 +Rdsw= 1.1460000E+03 lRdsw= -2.3999999E-05 wRdsw= -1.9199999E-04 pRdsw= 1.0000002E-11 +Prwb= 2.9500000E-02 +Prwg= -3.2596290E-09 +Wr= 1.0000000 +U0= 4.1371720E-02 +A0= 1.1916870 +Keta= -1.1081000E-02 lKeta= 4.0000000E-09 pKeta= 1.6500001E-15 +A1= 0.00 +A2= 1.0000000 +Ags= 0.2550000 pAgs= -2.5000000E-14 +B0= 5.1200000E-08 +B1= 0.00 * * SUBTHRESHOLD CURRENT PARAMETERS * +Voff= -0.1338250 +NFactor= 0.8875200 +Cit= 0.00 +Cdsc= 6.4040180E-04 +Cdscb= 0.00 +Cdscd= 0.00 +Eta0= 9.5819440E-02 pEta0= -3.3600000E-15 +Etab= -3.8400000E-02 pEtab= 2.0000002E-15 +Dsub= 0.7796514 * * ROUT PARAMETERS * +Pclm= 1.0838157 +Pdiblc1= 3.3256570E-03 +Pdiblc2= 1.0673814E-03 +Pdiblcb= 0.00 +Drout= 9.5951120E-02 *+Pscbe1= 6.0831020E+08 +Pscbe1= 8.5164E+08 +Pscbe2= 4.2862750E-05 +Pvag= 7.0746630E-02 +Delta= 2.1450121E-03 +Alpha0= 1.1000003E-06 pAlpha0= 1.5000000E-19 +Alpha1= 4.7757240 lAlpha1= -3.7000010E-07 pAlpha1= -8.2000000E-13 +Beta0= 22.4853550 lBeta0= 8.0000000E-08 * * TEMPERATURE EFFECTS PARAMETERS * +kt1= -0.2782500 lkt1= 1.2179998E-08 +kt2= -2.0000000E-02 lkt2= -1.0000000E-08 +At= 3.4000000E+04 +Ute= -1.7243394 wUte= 8.0000000E-08 +Ua1= -4.5460420E-13 +Ub1= 3.3460160E-21 +Uc1= -7.6289290E-12 +Kt1l= -2.2191699E-08 +Prt= 3.9055000E+02 * * CAPACITANCE PARAMETERS * +Cj= 1.023908E-03 +Mj= 0.3494655 +Pb= 0.7271543 +Cjsw= 2.26855E-10 +Mjsw= 0.2693402 +Pbsw= 0.9497247 +Tcj= 9.626137E-04 +Tcjsw= 7.622131E-04 +Tpb= 1.57771E-03 +Tpbsw= 2.341272E-03 +JS =3.05E-07 +JSW =1.40E-13 +Nj=0.9935 +Xti=3.0 +Cgdo=cgdon_tn +Cgso=cgson_tn +Cgbo=1.0E-13 +Capmod= 3 +NQSMOD= 0 +Elm= 5 +Xpart= 0 +cgsl= 2.2E-10 +cgdl= 2.2E-10 +ckappa= 0.6 +cf= 0.0 +clc= 1.0E-07 +cle= 0.6 +Dlc= 1.3E-09 +Dwc= 6.300E-08 +Vfbcv= -1 +Llc= 0 +Lwc= 0 +Wlc= 0 +Wwc= 0 +Lwlc= 0 +Wwlc= 0 +Acde= 0.5 +Moin= 15 +Noff= 1 +Voffcv= 0 * +noimod= 2 +NoiA= 1.68720E+17 +NoiB= 8799.889 +NoiC= -9.61545E-14 +Ef= 1.07018 +Em= 41000000 找出nmos和pmos的Tox,迁移率,沟道长度调制效应相关参数,计算并给出有效沟道 长度为0.5 μm时的沟道长度调制效应系数 解释Pclm
09-15
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.decomposition import FactorAnalysis #Reading Data data=pd.read_csv("D:\复习资料\MVAPureData\who1.csv") data=data.iloc[1:,:] data=data.drop('Country', axis=1, inplace=True) #Converting Data to Numeric for i in range(1,data.shape[1]): data.iloc[:,i]=pd.to_numeric(data.iloc[:,i]) #Filling Missing Values with Mean data=data.fillna(data.mean()) #Factor Analysis using Principal Component Analysis fa=FactorAnalysis(n_components=5,rotation='varimax') fa.fit(data.iloc[:,1:]) loadings=pd.DataFrame(fa.components_.T,columns=['Factor1','Factor2','Factor3','Factor4','Factor5'],index=data.columns[1:]) print('\nFactor Loadings Using Principal Component Analysis:\n',loadings) #Factor Analysis using Principal Factor Analysis fa=FactorAnalysis(n_components=5,rotation='varimax',method='principal') fa.fit(data.iloc[:,1:]) loadings=pd.DataFrame(fa.components_.T,columns=['Factor1','Factor2','Factor3','Factor4','Factor5'],index=data.columns[1:]) print('\nFactor Loadings Using Principal Factor Analysis:\n',loadings) #Factor Analysis using Maximum Likelihood Estimation fa=FactorAnalysis(n_components=5,rotation='varimax',method="ml") fa.fit(data.iloc[:,1:]) loadings=pd.DataFrame(fa.components_.T,columns=['Factor1','Factor2','Factor3','Factor4','Factor5'],index=data.columns[1:]) print('\nFactor Loadings Using Maximum Likelihood Estimation:\n',loadings) #Plotting Factor Loadings plt.figure(figsize=(15,8)) sns.heatmap(loadings,cmap='coolwarm',xticklabels=True,yticklabels=True,annot=True) plt.title('Factor Loadings') plt.xlabel('Factors') plt.ylabel('Variables') plt.show() #Naming Factors factors=fa.transform(data.iloc[:,1:]) factors=pd.DataFrame(factors,columns=['Factor1','Factor2','Factor3','Factor4','Factor5']) factors['Country']=data.iloc[:,0] countries=factors['Country'].tolist() for i in range(factors.shape[1]-1): factors[f'Factor{i+1}']=(factors[f'Factor{i+1}']-factors[f'Factor{i+1}'].mean())/factors[f'Factor{i+1}'].std() factors['Score']=factors.sum(axis=1) factors=factors.sort_values(by=['Score'],ascending=False).reset_index(drop=True) print('\nRanked Countries:\n',factors[['Country','Score']])
06-12
.SUBCKT FQP3P50 2 1 3 *Nom Temp=25 deg C Dbody 5 7 DbodyMOD Dbreak 7 11 DbreakMOD Lgate 1 9 1.125e-9 Ldrain 2 5 5.00e-10 Lsource 3 7 9.66e-10 RLgate 1 9 11.25 RLdrain 2 5 5.00 RLsource 3 7 9.66 Rgate 9 6 0.5 It 7 17 1 Ebreak 5 11 17 7 -500 Rbreak 17 7 RbreakMOD 1 .MODEL RbreakMOD RES (TC1=8.2e-4 TC2=-1.05e-6) .MODEL DbodyMOD D (IS=1.08e-15 N=1.0 RS=0.152 TRS1=1.0e-6 TRS2=1.1e-7 + CJO=6.52e-10 M=0.42 VJ=0.65 TT=4.39e-7 XTI=3 EG=1.24) .MODEL DbreakMOD D (RS=0.1 TRS1=1e-3 TRS2=1e-6) Rdrain 5 16 RdrainMOD 3.9 .MODEL RdrainMOD RES (TC1=7.31e-3 TC2=1.14e-5) M_BSIM3 16 6 7 7 Bsim3 W=0.86 L=2.0e-6 NRS=1 .MODEL Bsim3 PMOS (LEVEL=7 VERSION=3.1 MOBMOD=3 CAPMOD=2 PARAMCHK=1 NQSMOD=0 + TOX=970e-10 XJ=1.0e-6 NCH=1.1e17 + U0=250 VSAT=5.0e5 DROUT=1.0 + DELTA=0.1 PSCBE2=0 RSH=1.5e-3 + VTH0=-3.55 VOFF=-0.1 NFACTOR=1.1 + LINT=2.7e-8 DLC=2.7e-8 CGSO=1.1e-15 + CGSL=0 CGDO=6.5e-15 CGDL=7.82e-10 + CJ=0 CF=0 CKAPPA=0.2 + KT1=-1.08 KT2=0 UA1=-7.2e-9 + NJ=10 ) .ENDS ******************* Power Discrete MOSFET Thermal Model ************************ ** Product: FQP3P50 ** Package: TO-220 **------------------------------------------------------------------------------ .SUBCKT FQP3P50_THERMAL TH TL CTHERM1 TH 6 8.04e-4 CTHERM2 6 5 4.28e-3 CTHERM3 5 4 8.34e-3 CTHERM4 4 3 1.62e-2 CTHERM5 3 2 2.02e-1 CTHERM6 2 TL 5.42e-1 RTHERM1 TH 6 1.30e-2 RTHERM2 6 5 2.88e-2 RTHERM3 5 4 3.68e-2 RTHERM4 4 3 4.12e-1 RTHERM5 3 2 4.41e-1 RTHERM6 2 TL 5.38e-1 .ENDS FQP3P50_THERMAL **----------------------------------------------------------------------------- ** Creation: Mar.-16-2012 Rev.:0.0 ** Fairchild Semiconductor含义
05-24
【激光质量检测】利用丝杆与步进电机的组合装置带动光源的移动,完成对光源使用切片法测量其光束质量的目的研究(Matlab代码实现)内容概要:本文研究了利用丝杆与步进电机的组合装置带动光源移动,结合切片法实现对激光光源光束质量的精确测量方法,并提供了基于Matlab的代码实现方案。该系统通过机械装置精确控制光源位置,采集不同截面的光强分布数据,进而分析光束的聚焦特性、发散角、光斑尺寸等关键质量参数,适用于高精度光学检测场景。研究重点在于硬件控制与图像处理算法的协同设计,实现了自动化、高重复性的光束质量评估流程。; 适合人群:具备一定光学基础知识和Matlab编程能力的科研人员或工程技术人员,尤其适合从事激光应用、光电检测、精密仪器开发等相关领域的研究生及研发工程师。; 使用场景及目标:①实现对连续或脉冲激光器输出光束的质量评估;②为激光加工、医疗激光、通信激光等应用场景提供可靠的光束分析手段;③通过Matlab仿真与实际控制对接,验证切片法测量方案的有效性与精度。; 阅读建议:建议读者结合机械控制原理与光学测量理论同步理解文档内容,重点关注步进电机控制逻辑与切片数据处理算法的衔接部分,实际应用时需校准装置并优化采样间距以提高测量精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值