曲率知识总结
Introduction
NULL
弧微分
设函数f(x)在区间(a,b)内具有连续导数,图形如图2.1中 A B ^ \widehat{AB} AB
所示.
现在存在一段弧s, s ( x ) = A M ^ s(x) = \widehat{AM} s(x)=AM .则曲线s从M到M’点关于x的变化率为 d s d x \frac{ds}{dx} dxds:
d s d x = M M ′ ^ Δ x = M M ′ ^ ∣ M M ′ ∣ ∗ ∣ M M ′ ∣ Δ x = M M ′ ^ ∣ M M ′ ∣ ∗ ( Δ x ) 2 + ( Δ y ) 2 Δ x \frac{ds}{dx}=\frac{\widehat{MM'}}{\Delta x}=\frac{\widehat{MM'}}{|MM'|} * \frac{|MM'|}{\Delta x}= \frac{\widehat{MM'}}{|MM'|} * \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta x} dxds=ΔxMM′ =∣MM′∣MM′ ∗Δx∣MM′∣=∣MM′∣MM′ ∗Δx(Δx)2+(Δy)2
因为 lim Δ x → 0 M M ′ ^ ∣ M M ′ ∣ = 1 \lim_{\Delta x \to 0}\frac{\widehat{MM'}}{|MM'|} = 1 limΔx→0∣MM′∣MM′ =1
所以 lim Δ x → 0 M M ′ ^ ∣ M M ′ ∣ ∗ ( Δ x ) 2 + ( Δ y ) 2 Δ x = ( Δ x ) 2 + ( Δ y ) 2 Δ x = 1 + ( Δ y Δ x ) 2 \lim_{\Delta x \to 0}\frac{\widehat{MM'}}{|MM'|} * \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta x} = \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta x}=\sqrt{1+(\frac{\Delta y}{\Delta x})^2} limΔx→0∣MM′∣MM