Eigen中Quaternion的一些小细节

参考: http://eigen.tuxfamily.org/dox/classEigen_1_1Quaternion.html

针对一个刚体的旋转,我们可以用欧拉角,旋转矩阵,旋转向量,四元数等等方式来表达. 四元数是一种抽象的, 但是数学表达效果较好的一种旋转表达方式, 因为它相比与欧拉角,不存在奇异性;相比于旋转矩阵也更加紧凑,冗余
/* * Copyright 2018-2019 Autoware Foundation. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ekf_localizer/ekf_localizer.h" // clang-format off #define PRINT_MAT(X) std::cout << #X << ":\n" << X << std::endl << std::endl #define DEBUG_INFO(...) { if (show_debug_info_) { ROS_INFO(__VA_ARGS__); } } #define DEBUG_PRINT_MAT(X) { if (show_debug_info_) { std::cout << #X << ": " << X << std::endl; } } // clang-format on /* x, y:机器人位置。 yaw:机器人朝向(偏航角)。 yaw_bias:偏航角偏差(用于估计传感器误差)。 vx, wz:线速度和角速度。 */ EKFLocalizer::EKFLocalizer() : nh_(""), pnh_("~"), dim_x_(8 /* x, y, yaw, yaw_bias, vx, wz */) { pnh_.param("show_debug_info", show_debug_info_, bool(false)); // 是否显示调试信息 pnh_.param("predict_frequency", ekf_rate_, double(50.0)); // EKF 预测频率(Hz) ekf_dt_ = 1.0 / std::max(ekf_rate_, 0.1); // 计算时间步长(秒) pnh_.param("enable_yaw_bias_estimation", enable_yaw_bias_estimation_, bool(true)); // 是否估计偏航角偏差 pnh_.param("extend_state_step", extend_state_step_, int(50)); // 状态扩展步数(用于滑动窗口优化) pnh_.param("pose_frame_id", pose_frame_id_, std::string("map")); // 输出位姿的坐标系 ID pnh_.param("output_frame_id", output_frame_id_, std::string("base_link")); // 输出坐标系 /* pose measurement 位姿测量参数*/ pnh_.param("pose_additional_delay", pose_additional_delay_, double(0.0)); // 额外延迟(秒) pnh_.param("pose_measure_uncertainty_time", pose_measure_uncertainty_time_, double(0.01)); // 测量不确定性时间 pnh_.param("pose_rate", pose_rate_, double(10.0)); // 位姿测量频率(用于协方差计算) // used for covariance calculation pnh_.param("pose_gate_dist", pose_gate_dist_, double(10000.0)); // 马氏距离阈值(异常值过滤) // Mahalanobis limit pnh_.param("pose_stddev_x", pose_stddev_x_, double(0.05)); // X 方向标准差(米) pnh_.param("pose_stddev_y", pose_stddev_y_, double(0.05)); // Y 方向标准差(米) pnh_.param("pose_stddev_yaw", pose_stddev_yaw_, double(0.035)); // 偏航角标准差(弧度) pnh_.param("use_pose_with_covariance", use_pose_with_covariance_, bool(false)); // 是否使用带协方差的位姿输入 /* twist measurement 速度测量参数*/ pnh_.param("twist_additional_delay", twist_additional_delay_, double(0.0)); // 额外延迟(秒) pnh_.param("twist_rate", twist_rate_, double(10.0)); // 速度测量频率(用于协方差计算) // used for covariance calculation pnh_.param("twist_gate_dist", twist_gate_dist_, double(10000.0)); // 马氏距离阈值(异常值过滤) // Mahalanobis limit pnh_.param("twist_stddev_vx", twist_stddev_vx_, double(0.2)); // 线速度标准差(米/秒) pnh_.param("twist_stddev_wz", twist_stddev_wz_, double(0.03)); // 角速度标准差(弧度/秒) pnh_.param("use_twist_with_covariance", use_twist_with_covariance_, bool(false)); // 是否使用带协方差的速度输入 /* IMU measurement parameters */ pnh_.param("use_imu", use_imu_, bool(true)); pnh_.param("imu_rate", imu_rate_, double(50.0)); pnh_.param("imu_gate_dist", imu_gate_dist_, double(10000.0)); pnh_.param("imu_stddev_ax", imu_stddev_ax_, double(0.5)); pnh_.param("imu_stddev_wz", imu_stddev_wz_, double(0.01)); /* process noise 过程噪声参数*/ double proc_stddev_yaw_c, proc_stddev_yaw_bias_c, proc_stddev_vx_c, proc_stddev_wz_c; double proc_stddev_ax_c, proc_stddev_wz_imu_c; pnh_.param("proc_stddev_yaw_c", proc_stddev_yaw_c, double(0.005)); // 偏航角过程噪声(连续时间) pnh_.param("proc_stddev_yaw_bias_c", proc_stddev_yaw_bias_c, double(0.001)); // 偏航角偏差过程噪声 pnh_.param("proc_stddev_vx_c", proc_stddev_vx_c, double(2.0)); // 线速度过程噪声 pnh_.param("proc_stddev_wz_c", proc_stddev_wz_c, double(0.2)); // 角速度过程噪声 if (!enable_yaw_bias_estimation_) { proc_stddev_yaw_bias_c = 0.0; } /* convert to continuous to discrete 转换为离散时间噪声(乘以时间步长)*/ proc_cov_vx_d_ = std::pow(proc_stddev_vx_c, 2.0) * ekf_dt_; proc_cov_wz_d_ = std::pow(proc_stddev_wz_c, 2.0) * ekf_dt_; proc_cov_yaw_d_ = std::pow(proc_stddev_yaw_c, 2.0) * ekf_dt_; proc_cov_yaw_bias_d_ = std::pow(proc_stddev_yaw_bias_c, 2.0) * ekf_dt_; proc_cov_ax_d_ = std::pow(proc_stddev_ax_c, 2.0) * ekf_dt_; proc_cov_wz_imu_d_ = std::pow(proc_stddev_wz_imu_c, 2.0) * ekf_dt_; /* initialize ros system */ // 定时器(用于 EKF 预测步) timer_control_ = nh_.createTimer(ros::Duration(ekf_dt_), &EKFLocalizer::timerCallback, this); // 发布话题 //pub_pose_ = nh_.advertise<geometry_msgs::PoseStamped>("/ekf_pose", 1); pub_pose_ = nh_.advertise<geometry_msgs::PoseStamped>("/ndt_pose", 10); pub_pose_cov_ = nh_.advertise<geometry_msgs::PoseWithCovarianceStamped>("ekf_pose_with_covariance", 10); //pub_twist_ = nh_.advertise<geometry_msgs::TwistStamped>("/ekf_twist", 1); pub_twist_ = nh_.advertise<geometry_msgs::TwistStamped>("/estimate_twist", 10); pub_twist_cov_ = nh_.advertise<geometry_msgs::TwistWithCovarianceStamped>("ekf_twist_with_covariance", 10); pub_yaw_bias_ = pnh_.advertise<std_msgs::Float64>("estimated_yaw_bias", 10); // 订阅话题 sub_initialpose_ = nh_.subscribe("initialpose", 10, &EKFLocalizer::callbackInitialPose, this); sub_pose_with_cov_ = nh_.subscribe("in_pose_with_covariance", 10, &EKFLocalizer::callbackPoseWithCovariance, this); sub_pose_ = nh_.subscribe("/in_pose", 10, &EKFLocalizer::callbackPose, this); sub_twist_with_cov_ = nh_.subscribe("in_twist_with_covariance", 10, &EKFLocalizer::callbackTwistWithCovariance, this); //sub_twist_ = nh_.subscribe("/can_info", 10, &EKFLocalizer::callbackTwist, this); imu_sub_.subscribe(nh_, "/imu_raw", 100); vehicle_sub_.subscribe(nh_, "/can_info", 50); sync_ = boost::make_shared<message_filters::Synchronizer<SyncPolicy>>(SyncPolicy(10)); sync_->connectInput(imu_sub_, vehicle_sub_); sync_->registerCallback(boost::bind(&EKFLocalizer::sensorCallback, this, _1, _2)); sync_->setMaxIntervalDuration(ros::Duration(0.003)); // 3ms容差 dim_x_ex_ = dim_x_ * extend_state_step_; // 扩展状态维度(用于滑动窗口优化) initEKF(); // 初始化 EKF 内部状态 last_timer_call_time_ = 0.0; /* debug */ pub_debug_ = pnh_.advertise<std_msgs::Float64MultiArray>("debug", 1); // 调试信息(数组) pub_measured_pose_ = pnh_.advertise<geometry_msgs::PoseStamped>("debug/measured_pose", 1); // 调试用测量位姿 pub_measured_imu_ = pnh_.advertise<sensor_msgs::Imu>("debug/measured_imu", 1); }; EKFLocalizer::~EKFLocalizer(){}; /* * timerCallback */ void EKFLocalizer::timerCallback(const ros::TimerEvent& e) { DEBUG_INFO("========================= timer called ========================="); /* predict model in EKF 预测步(Predict)*/ auto start = std::chrono::system_clock::now(); DEBUG_INFO("------------------------- start prediction -------------------------"); double actual_dt = (last_timer_call_time_ > 0.0) ? (ros::Time::now().toSec() - last_timer_call_time_) : ekf_dt_; predictKinematicsModel(actual_dt); // 执行运动模型预测 double elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now() - start).count(); // 计算耗时 DEBUG_INFO("[EKF] predictKinematicsModel calculation time = %f [ms]", elapsed * 1.0e-6); DEBUG_INFO("------------------------- end prediction -------------------------\n"); /* pose measurement update */ if (current_pose_ptr_ != nullptr) // 位姿更新(当有新位姿数据时) { DEBUG_INFO("------------------------- start Pose -------------------------"); start = std::chrono::system_clock::now(); measurementUpdatePose(*current_pose_ptr_); // 融合传感器位姿数据 elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now() - start).count(); DEBUG_INFO("[EKF] measurementUpdatePose calculation time = %f [ms]", elapsed * 1.0e-6); DEBUG_INFO("------------------------- end Pose -------------------------\n"); } /* twist measurement update */ if (current_twist_ptr_ != nullptr) // 速度更新(当有新速度数据时) { DEBUG_INFO("------------------------- start twist -------------------------"); start = std::chrono::system_clock::now(); measurementUpdateTwist(*current_twist_ptr_); // 融合速度数据 elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now() - start).count(); DEBUG_INFO("[EKF] measurementUpdateTwist calculation time = %f [ms]", elapsed * 1.0e-6); DEBUG_INFO("------------------------- end twist -------------------------\n"); } /* IMU measurement update */ if (use_imu_ && current_imu_ptr_ != nullptr) { DEBUG_INFO("------------------------- start IMU -------------------------"); start = std::chrono::system_clock::now(); measurementUpdateIMU(*current_imu_ptr_); elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now() - start).count(); DEBUG_INFO("[EKF] measurementUpdateIMU calculation time = %f [ms]", elapsed * 1.0e-6); DEBUG_INFO("------------------------- end IMU -------------------------\n"); } /* set current pose, twist */ setCurrentResult(); // 更新内部状态 last_timer_call_time_ = ros::Time::now().toSec(); /* publish ekf result */ publishEstimateResult(); // 发布最终估计结果 } void EKFLocalizer::showCurrentX() { // 检查调试信息显示标志是否开启 if (show_debug_info_) { // 创建临时矩阵存储状态向量 Eigen::MatrixXd X(dim_x_, 1); // 从EKF获取最新状态估计值 ekf_.getLatestX(X); // 打印转置后的状态向量(行向量形式) DEBUG_PRINT_MAT(X.transpose()); } } /* * setCurrentResult */ void EKFLocalizer::setCurrentResult() { current_ekf_pose_.header.frame_id = pose_frame_id_; current_ekf_pose_.header.stamp = ros::Time::now(); current_ekf_pose_.pose.position.x = ekf_.getXelement(IDX::X); current_ekf_pose_.pose.position.y = ekf_.getXelement(IDX::Y); tf2::Quaternion q_tf; double roll, pitch, yaw; if (current_pose_ptr_ != nullptr) { current_ekf_pose_.pose.position.z = current_pose_ptr_->pose.position.z; tf2::fromMsg(current_pose_ptr_->pose.orientation, q_tf); /* use Pose pitch and roll */ tf2::Matrix3x3(q_tf).getRPY(roll, pitch, yaw); } else { current_ekf_pose_.pose.position.z = 0.0; roll = 0; pitch = 0; } yaw = ekf_.getXelement(IDX::YAW) + ekf_.getXelement(IDX::YAWB); q_tf.setRPY(roll, pitch, yaw); tf2::convert(q_tf, current_ekf_pose_.pose.orientation); current_ekf_twist_.header.frame_id = output_frame_id_; current_ekf_twist_.header.stamp = ros::Time::now(); current_ekf_twist_.twist.linear.x = ekf_.getXelement(IDX::VX); current_ekf_twist_.twist.angular.z = ekf_.getXelement(IDX::WZ) + ekf_.getXelement(IDX::WZ_IMU); } /* * broadcastTF */ void EKFLocalizer::broadcastTF(ros::Time time) { // if (current_ekf_pose_.header.frame_id == "") // { // return; // } // tf::Transform transform; // transform.setOrigin(tf::Vector3(current_ekf_pose_.pose.position.x, current_ekf_pose_.pose.position.y, current_ekf_pose_.pose.position.z)); // tf::Quaternion current_q( // current_ekf_pose_.pose.orientation.x, // current_ekf_pose_.pose.orientation.y, // current_ekf_pose_.pose.orientation.z, // current_ekf_pose_.pose.orientation.w // ); // transform.setRotation(current_q); // tf_br_.sendTransform(tf::StampedTransform(transform, time, "/map", output_frame_id_)); if (current_ekf_pose_.header.frame_id == "") { return; } geometry_msgs::TransformStamped transformStamped; transformStamped.header = current_ekf_pose_.header; transformStamped.child_frame_id = output_frame_id_; transformStamped.transform.translation.x = current_ekf_pose_.pose.position.x; transformStamped.transform.translation.y = current_ekf_pose_.pose.position.y; transformStamped.transform.translation.z = current_ekf_pose_.pose.position.z; transformStamped.transform.rotation.x = current_ekf_pose_.pose.orientation.x; transformStamped.transform.rotation.y = current_ekf_pose_.pose.orientation.y; transformStamped.transform.rotation.z = current_ekf_pose_.pose.orientation.z; transformStamped.transform.rotation.w = current_ekf_pose_.pose.orientation.w; tf_br_.sendTransform(transformStamped); } /* * getTransformFromTF */ bool EKFLocalizer::getTransformFromTF(std::string parent_frame, std::string child_frame, geometry_msgs::TransformStamped& transform) { // tf::TransformListener listener; // for (int i = 0; i < 50; ++i) // { // try // { // auto now = ros::Time(0); // listener.waitForTransform(parent_frame, child_frame, now, ros::Duration(10.0)); // listener.lookupTransform(parent_frame, child_frame, now, transform); // return true; // } // catch (tf::TransformException& ex) // { // ROS_ERROR("%s", ex.what()); // ros::Duration(0.1).sleep(); // } // } // return false; tf2_ros::Buffer tf_buffer; tf2_ros::TransformListener tf_listener(tf_buffer); ros::Duration(0.1).sleep(); if (parent_frame.front() == '/') parent_frame.erase(0, 1); if (child_frame.front() == '/') child_frame.erase(0, 1); for (int i = 0; i < 50; ++i) { try { transform = tf_buffer.lookupTransform(parent_frame, child_frame, ros::Time(0)); return true; } catch (tf2::TransformException& ex) { ROS_WARN("%s", ex.what()); ros::Duration(0.1).sleep(); } } return false; } /* * callbackInitialPose */ void EKFLocalizer::callbackInitialPose(const geometry_msgs::PoseWithCovarianceStamped& initialpose) { // (1) 获取 TF 变换 // tf::StampedTransform transform; // if (!getTransformFromTF(pose_frame_id_, initialpose.header.frame_id, transform)) // { // ROS_ERROR("[EKF] TF transform failed. parent = %s, child = %s", // pose_frame_id_.c_str(), initialpose.header.frame_id.c_str()); // return; // 必须返回,避免使用无效变换 // } // // (2) 初始化状态向量 X // Eigen::MatrixXd X(dim_x_, 1); // X.setZero(); // 显式初始化所有状态为 0 // // 将 initialpose 变换到 pose_frame_id_ 坐标系 // tf::Pose tf_initial_pose; // tf::poseMsgToTF(initialpose.pose.pose, tf_initial_pose); // tf::Pose transformed_pose = transform * tf_initial_pose; // 正确应用 TF 变换 // X(IDX::X) = transformed_pose.getOrigin().x(); // X(IDX::Y) = transformed_pose.getOrigin().y(); // X(IDX::YAW) = tf::getYaw(transformed_pose.getRotation()); // X(IDX::YAWB) = 0.0; // 偏航角偏差初始化为 0 // X(IDX::VX) = 0.0; // 速度初始化为 0 // X(IDX::WZ) = 0.0; // 角速度初始化为 0 // X(IDX::AX) = 0.0; // 加速度初始化为 0 // X(IDX::WZ_IMU) = 0.0; // IMU 角速度初始化为 0 // // (3) 初始化协方差矩阵 P // Eigen::MatrixXd P = Eigen::MatrixXd::Zero(dim_x_, dim_x_); // const auto& cov = initialpose.pose.covariance; // // 检查协方差矩阵是否有效(非负且非全零) // if (cov[0] > 0.0) P(IDX::X, IDX::X) = cov[0]; // X variance // if (cov[7] > 0.0) P(IDX::Y, IDX::Y) = cov[7]; // Y variance // if (cov[35] > 0.0) P(IDX::YAW, IDX::YAW) = cov[35]; // YAW variance // // 其他状态的协方差(默认值) // P(IDX::YAWB, IDX::YAWB) = 0.0001; // 偏航角偏差 // P(IDX::VX, IDX::VX) = 0.01; // 速度 // P(IDX::WZ, IDX::WZ) = 0.01; // 角速度 // P(IDX::AX, IDX::AX) = 0.01; // 加速度 // P(IDX::WZ_IMU, IDX::WZ_IMU) = 0.01; // IMU 角速度 // // (4) 初始化 EKF // ekf_.init(X, P, extend_state_step_); geometry_msgs::TransformStamped transform; if (!getTransformFromTF(pose_frame_id_, initialpose.header.frame_id, transform)) { ROS_ERROR("[EKF] TF transform failed. parent = %s, child = %s", pose_frame_id_.c_str(), initialpose.header.frame_id.c_str()); }; Eigen::MatrixXd X(dim_x_, 1); Eigen::MatrixXd P = Eigen::MatrixXd::Zero(dim_x_, dim_x_); X(IDX::X) = initialpose.pose.pose.position.x /* + transform.transform.translation.x */; X(IDX::Y) = initialpose.pose.pose.position.y /* + transform.transform.translation.y */; X(IDX::YAW) = tf2::getYaw(initialpose.pose.pose.orientation) /* + tf2::getYaw(transform.transform.rotation) */; X(IDX::YAWB) = 0.0; X(IDX::VX) = 0.0; X(IDX::WZ) = 0.0; X(IDX::AX) = 0.0; // 加速度初始化为 0 X(IDX::WZ_IMU) = 0.0; // IMU 角速度初始化为 0 P(IDX::X, IDX::X) = initialpose.pose.covariance[0]; P(IDX::Y, IDX::Y) = initialpose.pose.covariance[6 + 1]; P(IDX::YAW, IDX::YAW) = initialpose.pose.covariance[6 * 5 + 5]; P(IDX::YAWB, IDX::YAWB) = 0.0001; P(IDX::VX, IDX::VX) = 0.01; P(IDX::WZ, IDX::WZ) = 0.01; P(IDX::AX, IDX::AX) = 0.01; // 加速度 P(IDX::WZ_IMU, IDX::WZ_IMU) = 0.01; // IMU 角速度 ekf_.init(X, P, extend_state_step_); }; /* * callbackPose */ void EKFLocalizer::callbackPose(const geometry_msgs::PoseStamped::ConstPtr& msg) { if (!use_pose_with_covariance_) { current_pose_ptr_ = std::make_shared<geometry_msgs::PoseStamped>(*msg); } }; /* * callbackPoseWithCovariance */ void EKFLocalizer::callbackPoseWithCovariance(const geometry_msgs::PoseWithCovarianceStamped::ConstPtr& msg) { if (use_pose_with_covariance_) { geometry_msgs::PoseStamped pose; pose.header = msg->header; pose.pose = msg->pose.pose; current_pose_ptr_ = std::make_shared<geometry_msgs::PoseStamped>(pose); current_pose_covariance_ = msg->pose.covariance; } }; /* * callbackTwist */ void EKFLocalizer::sensorCallback(const sensor_msgs::Imu::ConstPtr& imu_msg, const autoware_can_msgs::CANInfo::ConstPtr& vehicle_msg) { geometry_msgs::TwistStamped twist_msg; twist_msg.header = vehicle_msg->header; twist_msg.header.frame_id = "/base_link"; // 根据实际坐标系设置 // 设置线速度 (来自CAN) twist_msg.twist.linear.x = (vehicle_msg->speed / 3.6) * cos(vehicle_msg->angle); twist_msg.twist.linear.y = 0.0; twist_msg.twist.linear.z = 0.0; // 设置角速度 (来自IMU) //twist_msg.twist.angular = imu_msg->angular_velocity; // 计算运动学模型的角速度 twist_msg.twist.angular.x = 0; twist_msg.twist.angular.y = 0; twist_msg.twist.angular.z = ((vehicle_msg->speed / 3.6)*sin(vehicle_msg->angle))/1.137; current_twist_ptr_ = std::make_shared<geometry_msgs::TwistStamped>(twist_msg); if (imu_msg->header.frame_id != "imu") { ROS_WARN_DELAYED_THROTTLE(2, "IMU frame_id is %s, but expected 'imu'", imu_msg->header.frame_id.c_str()); } current_imu_ptr_ = std::make_shared<sensor_msgs::Imu>(*imu_msg); // // 估计IMU零偏 // estimateIMUBias(); } /* * callbackTwistWithCovariance */ void EKFLocalizer::callbackTwistWithCovariance(const geometry_msgs::TwistWithCovarianceStamped::ConstPtr& msg) { if (use_twist_with_covariance_) { geometry_msgs::TwistStamped twist; twist.header = msg->header; twist.twist = msg->twist.twist; current_twist_ptr_ = std::make_shared<geometry_msgs::TwistStamped>(twist); current_twist_covariance_ = msg->twist.covariance; } }; /* * initEKF */ void EKFLocalizer::initEKF() { Eigen::MatrixXd X = Eigen::MatrixXd::Zero(dim_x_, 1); Eigen::MatrixXd P = Eigen::MatrixXd::Identity(dim_x_, dim_x_) * 1.0E15; // for x & y P(IDX::YAW, IDX::YAW) = 50.0; // for yaw P(IDX::YAWB, IDX::YAWB) = proc_cov_yaw_bias_d_; // for yaw bias P(IDX::VX, IDX::VX) = 1000.0; // for vx P(IDX::WZ, IDX::WZ) = 50.0; // for wz P(IDX::AX, IDX::AX) = 10.0; P(IDX::WZ_IMU, IDX::WZ_IMU) = 1.0; ekf_.init(X, P, extend_state_step_); } /* * predictKinematicsModel */ void EKFLocalizer::predictKinematicsModel(double actual_dt) { Eigen::MatrixXd X_curr(dim_x_, 1); Eigen::MatrixXd X_next(dim_x_, 1); ekf_.getLatestX(X_curr); DEBUG_PRINT_MAT(X_curr.transpose()); Eigen::MatrixXd P_curr; ekf_.getLatestP(P_curr); const double yaw = X_curr(IDX::YAW); const double yaw_bias = X_curr(IDX::YAWB); const double vx = X_curr(IDX::VX); const double wz = X_curr(IDX::WZ); const double ax = X_curr(IDX::AX); const double wz_imu = X_curr(IDX::WZ_IMU); const double dt = actual_dt; /* Update for latest state */ X_next(IDX::X) = X_curr(IDX::X) + vx * cos(yaw + yaw_bias) * dt + 0.5 * ax * cos(yaw + yaw_bias) * dt * dt; X_next(IDX::Y) = X_curr(IDX::Y) + vx * sin(yaw + yaw_bias) * dt + 0.5 * ax * sin(yaw + yaw_bias) * dt * dt; X_next(IDX::YAW) = X_curr(IDX::YAW) + (wz + wz_imu) * dt; X_next(IDX::YAWB) = yaw_bias; X_next(IDX::VX) = vx + ax * dt; X_next(IDX::WZ) = wz; X_next(IDX::AX) = ax; X_next(IDX::WZ_IMU) = wz_imu; X_next(IDX::YAW) = std::atan2(std::sin(X_next(IDX::YAW)), std::cos(X_next(IDX::YAW))); /* Set A matrix for latest state */ Eigen::MatrixXd A = Eigen::MatrixXd::Identity(dim_x_, dim_x_); A(IDX::X, IDX::YAW) = -vx * sin(yaw + yaw_bias) * dt - 0.5 * ax * sin(yaw + yaw_bias) * dt * dt; A(IDX::X, IDX::YAWB) = -vx * sin(yaw + yaw_bias) * dt - 0.5 * ax * sin(yaw + yaw_bias) * dt * dt; A(IDX::X, IDX::VX) = cos(yaw + yaw_bias) * dt; A(IDX::X, IDX::AX) = 0.5 * cos(yaw + yaw_bias) * dt * dt; A(IDX::Y, IDX::YAW) = vx * cos(yaw + yaw_bias) * dt + 0.5 * ax * cos(yaw + yaw_bias) * dt * dt; A(IDX::Y, IDX::YAWB) = vx * cos(yaw + yaw_bias) * dt + 0.5 * ax * cos(yaw + yaw_bias) * dt * dt; A(IDX::Y, IDX::VX) = sin(yaw + yaw_bias) * dt; A(IDX::Y, IDX::AX) = 0.5 * sin(yaw + yaw_bias) * dt * dt; A(IDX::YAW, IDX::WZ) = dt; A(IDX::YAW, IDX::WZ_IMU) = dt; A(IDX::VX, IDX::AX) = dt; /* Process noise covariance matrix Q */ Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(dim_x_, dim_x_); // 位置过程噪声(由速度和加速度引起) const double dvx = std::sqrt(P_curr(IDX::VX, IDX::VX)); const double dax = std::sqrt(P_curr(IDX::AX, IDX::AX)); const double dyaw = std::sqrt(P_curr(IDX::YAW, IDX::YAW)); if (dvx < 10.0 && dyaw < 1.0 && dax < 5.0) { Eigen::MatrixXd Jp_pos = Eigen::MatrixXd::Zero(2, 3); Jp_pos << cos(yaw), -vx*sin(yaw), 0.5*cos(yaw), sin(yaw), vx*cos(yaw), 0.5*sin(yaw); Eigen::MatrixXd Q_vx_yaw_ax = Eigen::MatrixXd::Zero(3, 3); Q_vx_yaw_ax(0, 0) = P_curr(IDX::VX, IDX::VX) * dt; Q_vx_yaw_ax(1, 1) = P_curr(IDX::YAW, IDX::YAW) * dt; Q_vx_yaw_ax(2, 2) = P_curr(IDX::AX, IDX::AX) * dt; Q_vx_yaw_ax(0, 1) = P_curr(IDX::VX, IDX::YAW) * dt; Q_vx_yaw_ax(1, 0) = P_curr(IDX::YAW, IDX::VX) * dt; Q_vx_yaw_ax(0, 2) = P_curr(IDX::VX, IDX::AX) * dt; Q_vx_yaw_ax(2, 0) = P_curr(IDX::AX, IDX::VX) * dt; Q_vx_yaw_ax(1, 2) = P_curr(IDX::YAW, IDX::AX) * dt; Q_vx_yaw_ax(2, 1) = P_curr(IDX::AX, IDX::YAW) * dt; Q.block(0, 0, 2, 2) = Jp_pos * Q_vx_yaw_ax * Jp_pos.transpose(); } else { Q(IDX::X, IDX::X) = 0.1; Q(IDX::Y, IDX::Y) = 0.1; } // 角度过程噪声 Q(IDX::YAW, IDX::YAW) = proc_cov_yaw_d_; Q(IDX::YAWB, IDX::YAWB) = proc_cov_yaw_bias_d_; // 速度过程噪声 Q(IDX::VX, IDX::VX) = proc_cov_vx_d_; Q(IDX::WZ, IDX::WZ) = proc_cov_wz_d_; // 加速度和IMU角速度过程噪声 Q(IDX::AX, IDX::AX) = proc_cov_ax_d_; Q(IDX::WZ_IMU, IDX::WZ_IMU) = proc_cov_wz_imu_d_; ekf_.predictWithDelay(X_next, A, Q); // debug Eigen::MatrixXd X_result(dim_x_, 1); ekf_.getLatestX(X_result); DEBUG_PRINT_MAT(X_result.transpose()); DEBUG_PRINT_MAT((X_result - X_curr).transpose()); } /* * measurementUpdatePose */ void EKFLocalizer::measurementUpdatePose(const geometry_msgs::PoseStamped& pose) { if (pose.header.frame_id != pose_frame_id_) { ROS_WARN_DELAYED_THROTTLE(2, "pose frame_id is %s, but pose_frame is set as %s. They must be same.", pose.header.frame_id.c_str(), pose_frame_id_.c_str()); } Eigen::MatrixXd X_curr(dim_x_, 1); // curent state ekf_.getLatestX(X_curr); DEBUG_PRINT_MAT(X_curr.transpose()); constexpr int dim_y = 3; // pos_x, pos_y, yaw, depending on Pose output const ros::Time t_curr = ros::Time::now(); /* Calculate delay step */ double delay_time = (t_curr - pose.header.stamp).toSec() + pose_additional_delay_; if (delay_time < 0.0) { delay_time = 0.0; ROS_WARN_DELAYED_THROTTLE(1.0, "Pose time stamp is inappropriate, set delay to 0[s]. delay = %f", delay_time); } int delay_step = std::roundf(delay_time / ekf_dt_); if (delay_step > extend_state_step_ - 1) { ROS_WARN_DELAYED_THROTTLE(1.0, "Pose delay exceeds the compensation limit, ignored. delay: %f[s], limit = " "extend_state_step * ekf_dt : %f [s]", delay_time, extend_state_step_ * ekf_dt_); return; } DEBUG_INFO("delay_time: %f [s]", delay_time); /* Set yaw */ const double yaw_curr = ekf_.getXelement((unsigned int)(delay_step * dim_x_ + IDX::YAW)); double yaw = tf2::getYaw(pose.pose.orientation); const double ekf_yaw = ekf_.getXelement(delay_step * dim_x_ + IDX::YAW); const double yaw_error = normalizeYaw(yaw - ekf_yaw); // normalize the error not to exceed 2 pi yaw = yaw_error + ekf_yaw; /* Set measurement matrix */ Eigen::MatrixXd y(dim_y, 1); y << pose.pose.position.x, pose.pose.position.y, yaw; if (isnan(y.array()).any() || isinf(y.array()).any()) { ROS_WARN("[EKF] pose measurement matrix includes NaN of Inf. ignore update. check pose message."); return; } /* Gate */ Eigen::MatrixXd y_ekf(dim_y, 1); y_ekf << ekf_.getXelement(delay_step * dim_x_ + IDX::X), ekf_.getXelement(delay_step * dim_x_ + IDX::Y), ekf_yaw; Eigen::MatrixXd P_curr, P_y; ekf_.getLatestP(P_curr); P_y = P_curr.block(0, 0, dim_y, dim_y); if (!mahalanobisGate(pose_gate_dist_, y_ekf, y, P_y)) { ROS_WARN_DELAYED_THROTTLE(2.0, "[EKF] Pose measurement update, mahalanobis distance is over limit. ignore " "measurement data."); return; } DEBUG_PRINT_MAT(y.transpose()); DEBUG_PRINT_MAT(y_ekf.transpose()); DEBUG_PRINT_MAT((y - y_ekf).transpose()); /* Set measurement matrix */ Eigen::MatrixXd C = Eigen::MatrixXd::Zero(dim_y, dim_x_); C(0, IDX::X) = 1.0; // for pos x C(1, IDX::Y) = 1.0; // for pos y C(2, IDX::YAW) = 1.0; // for yaw /* Set measurement noise covariancs */ Eigen::MatrixXd R = Eigen::MatrixXd::Zero(dim_y, dim_y); if (use_pose_with_covariance_) { R(0, 0) = current_pose_covariance_.at(0); // x - x R(0, 1) = current_pose_covariance_.at(1); // x - y R(0, 2) = current_pose_covariance_.at(5); // x - yaw R(1, 0) = current_pose_covariance_.at(6); // y - x R(1, 1) = current_pose_covariance_.at(7); // y - y R(1, 2) = current_pose_covariance_.at(11); // y - yaw R(2, 0) = current_pose_covariance_.at(30); // yaw - x R(2, 1) = current_pose_covariance_.at(31); // yaw - y R(2, 2) = current_pose_covariance_.at(35); // yaw - yaw } else { const double ekf_yaw = ekf_.getXelement(IDX::YAW); const double vx = ekf_.getXelement(IDX::VX); const double wz = ekf_.getXelement(IDX::WZ); const double cov_pos_x = std::pow(pose_measure_uncertainty_time_ * vx * cos(ekf_yaw), 2.0); const double cov_pos_y = std::pow(pose_measure_uncertainty_time_ * vx * sin(ekf_yaw), 2.0); const double cov_yaw = std::pow(pose_measure_uncertainty_time_ * wz, 2.0); R(0, 0) = std::pow(pose_stddev_x_, 2) + cov_pos_x; // pos_x R(1, 1) = std::pow(pose_stddev_y_, 2) + cov_pos_y; // pos_y R(2, 2) = std::pow(pose_stddev_yaw_, 2) + cov_yaw; // yaw } /* In order to avoid a large change at the time of updating, measuremeent update is performed by dividing at every * step. */ R *= (ekf_rate_ / pose_rate_); ekf_.updateWithDelay(y, C, R, delay_step); // debug Eigen::MatrixXd X_result(dim_x_, 1); ekf_.getLatestX(X_result); DEBUG_PRINT_MAT(X_result.transpose()); DEBUG_PRINT_MAT((X_result - X_curr).transpose()); } /* * measurementUpdateTwist */ void EKFLocalizer::measurementUpdateTwist(const geometry_msgs::TwistStamped& twist) { if (twist.header.frame_id != output_frame_id_) { ROS_WARN_DELAYED_THROTTLE(2.0, "twist frame_id must be %s", output_frame_id_.c_str()); } Eigen::MatrixXd X_curr(dim_x_, 1); // curent state ekf_.getLatestX(X_curr); DEBUG_PRINT_MAT(X_curr.transpose()); constexpr int dim_y = 2; // vx, wz const ros::Time t_curr = ros::Time::now(); /* Calculate delay step */ double delay_time = (t_curr - twist.header.stamp).toSec() + twist_additional_delay_; if (delay_time < 0.0) { ROS_WARN_DELAYED_THROTTLE(1.0, "Twist time stamp is inappropriate (delay = %f [s]), set delay to 0[s].", delay_time); delay_time = 0.0; } int delay_step = std::roundf(delay_time / ekf_dt_); if (delay_step > extend_state_step_ - 1) { ROS_WARN_DELAYED_THROTTLE(1.0, "Twist delay exceeds the compensation limit, ignored. delay: %f[s], limit = " "extend_state_step * ekf_dt : %f [s]", delay_time, extend_state_step_ * ekf_dt_); return; } DEBUG_INFO("delay_time: %f [s]", delay_time); /* Set measurement matrix */ Eigen::MatrixXd y(dim_y, 1); y << twist.twist.linear.x, twist.twist.angular.z; if (isnan(y.array()).any() || isinf(y.array()).any()) { ROS_WARN("[EKF] twist measurement matrix includes NaN of Inf. ignore update. check twist message."); return; } /* Gate */ Eigen::MatrixXd y_ekf(dim_y, 1); y_ekf << ekf_.getXelement(delay_step * dim_x_ + IDX::VX), ekf_.getXelement(delay_step * dim_x_ + IDX::WZ); Eigen::MatrixXd P_curr, P_y; ekf_.getLatestP(P_curr); P_y = P_curr.block(4, 4, dim_y, dim_y); if (!mahalanobisGate(twist_gate_dist_, y_ekf, y, P_y)) { ROS_WARN_DELAYED_THROTTLE(2.0, "[EKF] Twist measurement update, mahalanobis distance is over limit. ignore " "measurement data."); return; } DEBUG_PRINT_MAT(y.transpose()); DEBUG_PRINT_MAT(y_ekf.transpose()); DEBUG_PRINT_MAT((y - y_ekf).transpose()); /* Set measurement matrix */ Eigen::MatrixXd C = Eigen::MatrixXd::Zero(dim_y, dim_x_); C(0, IDX::VX) = 1.0; // for vx C(1, IDX::WZ) = 1.0; // for wz /* Set measurement noise covariancs */ Eigen::MatrixXd R = Eigen::MatrixXd::Zero(dim_y, dim_y); if (use_twist_with_covariance_) { R(0, 0) = current_twist_covariance_.at(0); // vx - vx R(0, 1) = current_twist_covariance_.at(5); // vx - wz R(1, 0) = current_twist_covariance_.at(30); // wz - vx R(1, 1) = current_twist_covariance_.at(35); // wz - wz } else { R(0, 0) = twist_stddev_vx_ * twist_stddev_vx_ * ekf_dt_; // for vx R(1, 1) = twist_stddev_wz_ * twist_stddev_wz_ * ekf_dt_; // for wz } /* In order to avoid a large change by update, measurement update is performed by dividing at every step. */ R *= (ekf_rate_ / twist_rate_); ekf_.updateWithDelay(y, C, R, delay_step); // debug Eigen::MatrixXd X_result(dim_x_, 1); ekf_.getLatestX(X_result); DEBUG_PRINT_MAT(X_result.transpose()); DEBUG_PRINT_MAT((X_result - X_curr).transpose()); }; /* * mahalanobisGate */ bool EKFLocalizer::mahalanobisGate(const double& dist_max, const Eigen::MatrixXd& x, const Eigen::MatrixXd& obj_x, const Eigen::MatrixXd& cov) { Eigen::MatrixXd mahalanobis_squared = (x - obj_x).transpose() * cov.inverse() * (x - obj_x); // DEBUG_INFO("measurement update: mahalanobis = %f, gate limit = %f", std::sqrt(mahalanobis_squared(0)), dist_max); ROS_INFO("measurement update: mahalanobis = %f, gate limit = %f", std::sqrt(mahalanobis_squared(0)), dist_max); if (mahalanobis_squared(0) > dist_max * dist_max) { return false; } return true; } /* * publishEstimateResult */ void EKFLocalizer::publishEstimateResult() { ros::Time current_time = ros::Time::now(); Eigen::MatrixXd X(dim_x_, 1); Eigen::MatrixXd P(dim_x_, dim_x_); ekf_.getLatestX(X); ekf_.getLatestP(P); /* publish latest pose */ pub_pose_.publish(current_ekf_pose_); /* publish latest pose with covariance */ geometry_msgs::PoseWithCovarianceStamped pose_cov; pose_cov.header.stamp = current_time; pose_cov.header.frame_id = current_ekf_pose_.header.frame_id; pose_cov.pose.pose = current_ekf_pose_.pose; pose_cov.pose.covariance[0] = P(IDX::X, IDX::X); pose_cov.pose.covariance[1] = P(IDX::X, IDX::Y); pose_cov.pose.covariance[5] = P(IDX::X, IDX::YAW); pose_cov.pose.covariance[6] = P(IDX::Y, IDX::X); pose_cov.pose.covariance[7] = P(IDX::Y, IDX::Y); pose_cov.pose.covariance[11] = P(IDX::Y, IDX::YAW); pose_cov.pose.covariance[30] = P(IDX::YAW, IDX::X); pose_cov.pose.covariance[31] = P(IDX::YAW, IDX::Y); pose_cov.pose.covariance[35] = P(IDX::YAW, IDX::YAW); pub_pose_cov_.publish(pose_cov); /* publish latest twist */ pub_twist_.publish(current_ekf_twist_); /* publish latest twist with covariance */ geometry_msgs::TwistWithCovarianceStamped twist_cov; twist_cov.header.stamp = current_time; twist_cov.header.frame_id = current_ekf_twist_.header.frame_id; twist_cov.twist.twist = current_ekf_twist_.twist; twist_cov.twist.covariance[0] = P(IDX::VX, IDX::VX); twist_cov.twist.covariance[5] = P(IDX::VX, IDX::WZ) + P(IDX::VX, IDX::WZ_IMU); twist_cov.twist.covariance[30] = P(IDX::WZ, IDX::VX) + P(IDX::WZ_IMU, IDX::VX); twist_cov.twist.covariance[35] = P(IDX::WZ, IDX::WZ) + P(IDX::WZ, IDX::WZ_IMU) + P(IDX::WZ_IMU, IDX::WZ) + P(IDX::WZ_IMU, IDX::WZ_IMU); pub_twist_cov_.publish(twist_cov); /* Send transform of pose */ broadcastTF(current_time); /* publish yaw bias */ std_msgs::Float64 yawb; yawb.data = X(IDX::YAWB); pub_yaw_bias_.publish(yawb); /* debug measured pose */ if (current_pose_ptr_ != nullptr) { geometry_msgs::PoseStamped p; p = *current_pose_ptr_; p.header.stamp = current_time; pub_measured_pose_.publish(p); } /* debug publish */ double RAD2DEG = 180.0 / 3.141592; double pose_yaw = 0.0; if (current_pose_ptr_ != nullptr) pose_yaw = tf2::getYaw(current_pose_ptr_->pose.orientation) * RAD2DEG; std_msgs::Float64MultiArray msg; msg.data.push_back(X(IDX::YAW) * RAD2DEG); // [0] ekf yaw angle msg.data.push_back(pose_yaw); // [1] measurement yaw angle msg.data.push_back(X(IDX::YAWB) * RAD2DEG); // [2] yaw bias msg.data.push_back(X(IDX::AX)); // [3] estimated x acceleration msg.data.push_back(X(IDX::WZ_IMU)); // [4] estimated wz from IMU pub_debug_.publish(msg); } double EKFLocalizer::normalizeYaw(const double& yaw) { return std::atan2(std::sin(yaw), std::cos(yaw)); } /* * measurementUpdateIMU */ void EKFLocalizer::measurementUpdateIMU(const sensor_msgs::Imu& imu) { Eigen::MatrixXd X_curr(dim_x_, 1); ekf_.getLatestX(X_curr); DEBUG_PRINT_MAT(X_curr.transpose()); constexpr int dim_y = 2; // ax, wz const ros::Time t_curr = ros::Time::now(); /* Calculate delay step */ double delay_time = (t_curr - imu.header.stamp).toSec(); if (delay_time < 0.0) { ROS_WARN_DELAYED_THROTTLE(1.0, "IMU time stamp is inappropriate, set delay to 0[s]. delay = %f", delay_time); delay_time = 0.0; } int delay_step = std::roundf(delay_time / ekf_dt_); if (delay_step > extend_state_step_ - 1) { ROS_WARN_DELAYED_THROTTLE(1.0, "IMU delay exceeds the compensation limit, ignored. delay: %f[s], limit = " "extend_state_step * ekf_dt : %f [s]", delay_time, extend_state_step_ * ekf_dt_); return; } DEBUG_INFO("delay_time: %f [s]", delay_time); /* Set measurement matrix */ Eigen::MatrixXd y(dim_y, 1); y << imu.linear_acceleration.x, imu.angular_velocity.z; if (isnan(y.array()).any() || isinf(y.array()).any()) { ROS_WARN("[EKF] IMU measurement matrix includes NaN or Inf. ignore update. check IMU message."); return; } /* Gate */ Eigen::MatrixXd y_ekf(dim_y, 1); y_ekf << ekf_.getXelement(delay_step * dim_x_ + IDX::AX), ekf_.getXelement(delay_step * dim_x_ + IDX::WZ_IMU); Eigen::MatrixXd P_curr, P_y; ekf_.getLatestP(P_curr); P_y = P_curr.block(IDX::AX, IDX::AX, dim_y, dim_y); if (!mahalanobisGate(imu_gate_dist_, y_ekf, y, P_y)) { ROS_WARN_DELAYED_THROTTLE(2.0, "[EKF] IMU measurement update, mahalanobis distance is over limit. ignore " "measurement data."); return; } DEBUG_PRINT_MAT(y.transpose()); DEBUG_PRINT_MAT(y_ekf.transpose()); DEBUG_PRINT_MAT((y - y_ekf).transpose()); /* Set measurement matrix */ Eigen::MatrixXd C = Eigen::MatrixXd::Zero(dim_y, dim_x_); C(0, IDX::AX) = 1.0; // for ax C(1, IDX::WZ_IMU) = 1.0; // for wz_imu /* Set measurement noise covariance */ Eigen::MatrixXd R = Eigen::MatrixXd::Zero(dim_y, dim_y); R(0, 0) = imu_stddev_ax_ * imu_stddev_ax_; // for ax R(1, 1) = imu_stddev_wz_ * imu_stddev_wz_; // for wz_imu /* In order to avoid a large change by update, measurement update is performed by dividing at every step. */ R *= (ekf_rate_ / imu_rate_); ekf_.updateWithDelay(y, C, R, delay_step); // debug Eigen::MatrixXd X_result(dim_x_, 1); ekf_.getLatestX(X_result); DEBUG_PRINT_MAT(X_result.transpose()); DEBUG_PRINT_MAT((X_result - X_curr).transpose()); // Publish debug IMU message if (pub_measured_imu_.getNumSubscribers() > 0) { sensor_msgs::Imu debug_imu = imu; debug_imu.header.stamp = t_curr; pub_measured_imu_.publish(debug_imu); } } 小车转向时ekf发布的base_link在rviz中的转向不变但点云在转动,而且小车相对点云位置准确而且稳定
最新发布
08-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值