RxJava 到底是什么
一个词:异步。
RxJava 在 GitHub 主页上的自我介绍是 “a library for composing asynchronous and event-based programs using observable sequences for the Java VM”(一个在 Java VM 上使用可观测的序列来组成异步的、基于事件的程序的库)。
RxJava 好在哪?就好在简洁,好在那把什么复杂逻辑都能穿成一条线的简洁。
API 介绍和原理简析
RxJava 作为一个工具库,使用的就是通用形式的观察者模式。
OnClickListener 的模式大致如下图:
OnClickListener 观察者模式
通过 setOnClickListener() 方法,Button 持有 OnClickListener 的引用(这一过程没有在图上画出);当用户点击时,Button 自动调用 OnClickListener 的 onClick() 方法。另外,如果把这张图中的概念抽象出来(Button -> 被观察者、OnClickListener -> 观察者、setOnClickListener() -> 订阅,onClick() -> 事件),就由专用的观察者模式(例如只用于监听控件点击)转变成了通用的观察者模式。
RxJava 有四个基本概念:Observable (可观察者,即被观察者)、 Observer (观察者)、 subscribe (订阅)、事件。
与传统观察者模式不同, RxJava 的事件回调方法除了普通事件 onNext() (相当于 onClick() / onEvent())之外,还定义了两个特殊的事件:onCompleted() 和 onError()。
onCompleted(): 事件队列完结。RxJava 不仅把每个事件单独处理,还会把它们看做一个队列。RxJava 规定,当不会再有新的 onNext() 发出时,需要触发 onCompleted() 方法作为标志。
onError(): 事件队列异常。在事件处理过程中出异常时,onError() 会被触发,同时队列自动终止,不允许再有事件发出。
在一个正确运行的事件序列中, onCompleted() 和 onError() 有且只有一个,并且是事件序列中的最后一个。需要注意的是,onCompleted() 和 onError() 二者也是互斥的,即在队列中调用了其中一个,就不应该再调用另一个。
- 基本实现
基于以上的概念, RxJava 的基本实现主要有三点:
创建出 Observable 和 Subscriber ,再用 subscribe() 将它们串起来,一次 RxJava 的基本使用就完成了。非常简单。
Observable observable = Observable.create(new Observable.OnSubscribe<String>() {
@Override
public void call(Subscriber<? super String> subscriber) {
subscriber.onNext("Hello");
subscriber.onNext("Hi");
subscriber.onNext("Aloha");
subscriber.onCompleted();
}
});
Subscriber<String> subscriber = new Subscriber<String>() {
@Override
public void onNext(String s) {
Log.d(tag, "Item: " + s);
}
@Override
public void onCompleted() {
Log.d(tag, "Completed!");
}
@Override
public void onError(Throwable e) {
Log.d(tag, "Error!");
}
};
observable.subscribe(observer);
// 或者:
observable.subscribe(subscriber);
实例如下:
将字符串数组 names 中的所有字符串依次打印出来:
String[] names = ...;
Observable.from(names)
.subscribe(new Action1<String>() {
@Override
public void call(String name) {
Log.d(tag, name);
}
});
然而,在 RxJava 的默认规则中,事件的发出和消费都是在同一个线程的。也就是说,如果只用上面的方法,实现出来的只是一个同步的观察者模式。观察者模式本身的目的就是『后台处理,前台回调』的异步机制,因此异步对于 RxJava 是至关重要的。而要实现异步,则需要用到 RxJava 的另一个概念: Scheduler 。
线程控制 —— Scheduler (一)
在不指定线程的情况下, RxJava 遵循的是线程不变的原则,即:在哪个线程调用 subscribe(),就在哪个线程生产事件;在哪个线程生产事件,就在哪个线程消费事件。如果需要切换线程,就需要用到 Scheduler (调度器)。
在RxJava 中,Scheduler ——调度器,相当于线程控制器,RxJava 通过它来指定每一段代码应该运行在什么样的线程。RxJava 已经内置了几个 Scheduler ,它们已经适合大多数的使用场景:
Schedulers.immediate(): 直接在当前线程运行,相当于不指定线程。这是默认的 Scheduler。
Schedulers.newThread(): 总是启用新线程,并在新线程执行操作。
Schedulers.io(): I/O 操作(读写文件、读写数据库、网络信息交互等)所使用的 Scheduler。行为模式和 newThread() 差不多,区别在于 io() 的内部实现是是用一个无数量上限的线程池,可以重用空闲的线程,因此多数情况下 io() 比 newThread() 更有效率。不要把计算工作放在 io() 中,可以避免创建不必要的线程。
Schedulers.computation(): 计算所使用的 Scheduler。这个计算指的是 CPU 密集型计算,即不会被 I/O 等操作限制性能的操作,例如图形的计算。这个 Scheduler 使用的固定的线程池,大小为 CPU 核数。不要把 I/O 操作放在 computation() 中,否则 I/O 操作的等待时间会浪费 CPU。
另外, Android 还有一个专用的 AndroidSchedulers.mainThread(),它指定的操作将在 Android 主线程运行。
有了这几个 Scheduler ,就可以使用 subscribeOn() 和 observeOn() 两个方法来对线程进行控制了。 * subscribeOn(): 指定 subscribe() 所发生的线程,即 Observable.OnSubscribe 被激活时所处的线程。或者叫做事件产生的线程。 * observeOn(): 指定 Subscriber 所运行在的线程。或者叫做事件消费的线程。
Observable.just(1, 2, 3, 4)
.subscribeOn(Schedulers.io()) // 指定 subscribe() 发生在 IO 线程
.observeOn(AndroidSchedulers.mainThread()) // 指定 Subscriber 的回调发生在主线程
.subscribe(new Action1<Integer>() {
@Override
public void call(Integer number) {
Log.d(tag, "number:" + number);
}
});
由于 subscribeOn(Schedulers.io()) 的指定,被创建的事件的内容 1、2、3、4 将会在 IO 线程发出;而由于 observeOn(AndroidScheculers.mainThread()) 的指定,因此 subscriber 数字的打印将发生在主线程 。事实上,这种在 subscribe() 之前写上两句 subscribeOn(Scheduler.io()) 和 observeOn(AndroidSchedulers.mainThread()) 的使用方式非常常见,它适用于多数的 『后台线程取数据,主线程显示』的程序策略。
变换
RxJava 提供了对事件序列进行变换的支持,这是它的核心功能之一,也是大多数人说『RxJava 真是太好用了』的最大原因。所谓变换,就是将事件序列中的对象或整个序列进行加工处理,转换成不同的事件或事件序列。概念说着总是模糊难懂的,来看 API。
Observable.just("images/logo.png") // 输入类型 String
.map(new Func1<String, Bitmap>() {
@Override
public Bitmap call(String filePath) { // 参数类型 String
return getBitmapFromPath(filePath); // 返回类型 Bitmap
}
})
.subscribe(new Action1<Bitmap>() {
@Override
public void call(Bitmap bitmap) { // 参数类型 Bitmap
showBitmap(bitmap);
}
});
这里出现了一个叫做 Func1 的类。它和 Action1 非常相似,也是 RxJava 的一个接口,用于包装含有一个参数的方法。 Func1 和 Action 的区别在于, Func1 包装的是有返回值的方法。另外,和 ActionX 一样, FuncX 也有多个,用于不同参数个数的方法。FuncX 和 ActionX 的区别在 FuncX 包装的是有返回值的方法。
可以看到,map() 方法将参数中的 String 对象转换成一个 Bitmap 对象后返回,而在经过 map() 方法后,事件的参数类型也由 String 转为了 Bitmap。这种直接变换对象并返回的,是最常见的也最容易理解的变换。不过 RxJava 的变换远不止这样,它不仅可以针对事件对象,还可以针对整个事件队列,这使得 RxJava 变得非常灵活。
map(): 事件对象的直接变换,具体功能上面已经介绍过。它是 RxJava 最常用的变换。 map() 的示意图:
flatMap(): 这是一个很有用但非常难理解的变换,因此我决定花多些篇幅来介绍它。 首先假设这么一种需求:假设有一个数据结构『学生』,现在需要打印出一组学生的名字。实现方式很简单:
Student[] students = ...;
Subscriber<String> subscriber = new Subscriber<String>() {
@Override
public void onNext(String name) {
Log.d(tag, name);
}
...
};
Observable.from(students)
.map(new Func1<Student, String>() {
@Override
public String call(Student student) {
return student.getName();
}
})
.subscribe(subscriber);
如果要打印出每个学生所需要修的所有课程的名称呢?(需求的区别在于,每个学生只有一个名字,但却有多个课程。)首先可以这样实现:
Student[] students = ...;
Subscriber<Student> subscriber = new Subscriber<Student>() {
@Override
public void onNext(Student student) {
List<Course> courses = student.getCourses();
for (int i = 0; i < courses.size(); i++) {
Course course = courses.get(i);
Log.d(tag, course.getName());
}
}
...
};
Observable.from(students)
.subscribe(subscriber);
依然很简单。那么如果我不想在 Subscriber 中使用 for 循环,而是希望 Subscriber 中直接传入单个的 Course 对象呢(这对于代码复用很重要)?用 map() 显然是不行的,因为 map() 是一对一的转化,而我现在的要求是一对多的转化。那怎么才能把一个 Student 转化成多个 Course 呢?
这个时候,就需要用 flatMap() 了:
Student[] students = ...;
Subscriber<Course> subscriber = new Subscriber<Course>() {
@Override
public void onNext(Course course) {
Log.d(tag, course.getName());
}
...
};
Observable.from(students)
.flatMap(new Func1<Student, Observable<Course>>() {
@Override
public Observable<Course> call(Student student) {
return Observable.from(student.getCourses());
}
})
.subscribe(subscriber);
从上面的代码可以看出, flatMap() 和 map() 有一个相同点:它也是把传入的参数转化之后返回另一个对象。但需要注意,和 map() 不同的是, flatMap() 中返回的是个 Observable 对象,并且这个 Observable 对象并不是被直接发送到了 Subscriber 的回调方法中。 flatMap() 的原理是这样的:1. 使用传入的事件对象创建一个 Observable 对象;2. 并不发送这个 Observable, 而是将它激活,于是它开始发送事件;3. 每一个创建出来的 Observable 发送的事件,都被汇入同一个 Observable ,而这个 Observable 负责将这些事件统一交给 Subscriber 的回调方法。这三个步骤,把事件拆成了两级,通过一组新创建的 Observable 将初始的对象『铺平』之后通过统一路径分发了下去。而这个『铺平』就是 flatMap() 所谓的 flat。
扩展:由于可以在嵌套的 Observable 中添加异步代码, flatMap() 也常用于嵌套的异步操作,例如嵌套的网络请求。示例代码(Retrofit + RxJava):
networkClient.token() // 返回 Observable<String>,在订阅时请求 token,并在响应后发送 token
.flatMap(new Func1<String, Observable<Messages>>() {
@Override
public Observable<Messages> call(String token) {
// 返回 Observable<Messages>,在订阅时请求消息列表,并在响应后发送请求到的消息列表
return networkClient.messages();
}
})
.subscribe(new Action1<Messages>() {
@Override
public void call(Messages messages) {
// 处理显示消息列表
showMessages(messages);
}
});
变换的原理:lift()
这些变换虽然功能各有不同,但实质上都是针对事件序列的处理和再发送。而在 RxJava 的内部,它们是基于同一个基础的变换方法: lift(Operator)。首先看一下 lift() 的内部实现(仅核心代码):
在 Observable 执行了 lift(Operator) 方法之后,会返回一个新的 Observable,这个新的 Observable 会像一个代理一样,负责接收原始的 Observable 发出的事件,并在处理后发送给 Subscriber。
public <R> Observable<R> lift(Operator<? extends R, ? super T> operator) {
return Observable.create(new OnSubscribe<R>() {
@Override
public void call(Subscriber subscriber) {
Subscriber newSubscriber = operator.call(subscriber);
newSubscriber.onStart();
onSubscribe.call(newSubscriber);
}
});
}
compose: 对 Observable 整体的变换
除了 lift() 之外, Observable 还有一个变换方法叫做 compose(Transformer)。它和 lift() 的区别在于, lift() 是针对事件项和事件序列的,而 compose() 是针对 Observable 自身进行变换。举个例子,假设在程序中有多个 Observable ,并且他们都需要应用一组相同的 lift() 变换。你可以这么写:
public class LiftAllTransformer implements Observable.Transformer<Integer, String> {
@Override
public Observable<String> call(Observable<Integer> observable) {
return observable
.lift1()
.lift2()
.lift3()
.lift4();
}
}
...
Transformer liftAll = new LiftAllTransformer();
observable1.compose(liftAll).subscribe(subscriber1);
observable2.compose(liftAll).subscribe(subscriber2);
observable3.compose(liftAll).subscribe(subscriber3);
observable4.compose(liftAll).subscribe(subscriber4);
线程控制:Scheduler (二)
除了灵活的变换,RxJava 另一个牛逼的地方,就是线程的自由控制。
Scheduler 的 API (二)
前面讲到了,可以利用 subscribeOn() 结合 observeOn() 来实现线程控制,让事件的产生和消费发生在不同的线程。可是在了解了 map() flatMap() 等变换方法后,有些好事的(其实就是当初刚接触 RxJava 时的我)就问了:能不能多切换几次线程?
答案是:能。因为 observeOn() 指定的是 Subscriber 的线程,而这个 Subscriber 并不是(严格说应该为『不一定是』,但这里不妨理解为『不是』)subscribe() 参数中的 Subscriber ,而是 observeOn() 执行时的当前 Observable 所对应的 Subscriber ,即它的直接下级 Subscriber 。换句话说,observeOn() 指定的是它之后的操作所在的线程。因此如果有多次切换线程的需求,只要在每个想要切换线程的位置调用一次 observeOn() 即可。上代码:
Observable.just(1, 2, 3, 4) // IO 线程,由 subscribeOn() 指定
.subscribeOn(Schedulers.io())
.observeOn(Schedulers.newThread())
.map(mapOperator) // 新线程,由 observeOn() 指定
.observeOn(Schedulers.io())
.map(mapOperator2) // IO 线程,由 observeOn() 指定
.observeOn(AndroidSchedulers.mainThread)
.subscribe(subscriber); // Android 主线程,由 observeOn() 指定
如上,通过 observeOn() 的多次调用,程序实现了线程的多次切换。
不过,不同于 observeOn() , subscribeOn() 的位置放在哪里都可以,但它是只能调用一次的。
又有好事的(其实还是当初的我)问了:如果我非要调用多次 subscribeOn() 呢?会有什么效果?
Scheduler 的原理(二)
其实, subscribeOn() 和 observeOn() 的内部实现,也是用的 lift()。具体看图(不同颜色的箭头表示不同的线程):
subscribeOn() 原理图:
从图中可以看出,subscribeOn() 和 observeOn() 都做了线程切换的工作(图中的 “schedule…” 部位)。不同的是, subscribeOn() 的线程切换发生在 OnSubscribe 中,即在它通知上一级 OnSubscribe 时,这时事件还没有开始发送,因此 subscribeOn() 的线程控制可以从事件发出的开端就造成影响;而 observeOn() 的线程切换则发生在它内建的 Subscriber 中,即发生在它即将给下一级 Subscriber 发送事件时,因此 observeOn() 控制的是它后面的线程。