动态规划---房子抢劫最大利润

本文探讨了一个经典的动态规划问题——打家劫舍。该问题要求从一排房屋中选择若干座进行抢劫,每座房屋都有一定的金钱值,但相邻的房屋装有相连的安全系统,若两座相邻的房屋被同时抢劫则会触发报警。文章提供了两种语言(C++ 和 Python)的解决方案,并详细解释了如何通过动态规划求解最大抢劫金额。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、题目:

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
             Total amount you can rob = 1 + 3 = 4.

Example 2:

Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
             Total amount you can rob = 2 + 9 + 1 = 12.

2、解答:为了是f[n]最大化,则必须再 选 f[i-2]+nums[i] 和 不选 f[i-1] 选择最大值

3、代码:

C++代码

class Solution {
public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        if(n==0)
            return 0;
        if(n==1)
            return nums[0];
        if(n==2)
            return max(nums[0],nums[1]);
        
        vector<int> f(n,0);
        
        f[0] = nums[0];
        f[1] = max(nums[0],nums[1]);
        for(int i=2;i<n;i++){
            f[i] = max(f[i-2]+nums[i],f[i-1]);
        }
        return f[n-1];
        
    }
};

python代码

class Solution:
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        
        dp = [0]*len(nums)
        
        if len(nums) == 1:
            return nums[0]
        
        dp[0] = nums[0]
        dp[1] = max(nums[0],nums[1])
        
        for i in range(2,len(nums)):
            dp[i] = max(dp[i-2]+nums[i],dp[i-1])
            
        return dp[-1]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值