Topological Sort
Write a program to find the topological order in a digraph.
Format of functions:
bool TopSort( LGraph Graph, Vertex TopOrder[] );
where LGraph
is defined as the following:
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV;
PtrToAdjVNode Next;
};
typedef struct Vnode{
PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;
The topological order is supposed to be stored in TopOrder[]
whereTopOrder[i]
is the i
-th vertex in the resulting sequence. The topological sort cannot be successful if there is a cycle in the graph -- in that caseTopSort
must return false
; otherwise return true
.
Notice that the topological order might not be unique, but the judge's input guarantees the uniqueness of the result.
Sample program of judge:
#include <stdio.h>
#include <stdlib.h>
typedef enum {false, true} bool;
#define MaxVertexNum 10 /* maximum number of vertices */
typedef int Vertex; /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV;
PtrToAdjVNode Next;
};
typedef struct Vnode{
PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;
LGraph ReadG(); /* details omitted */
bool TopSort( LGraph Graph, Vertex TopOrder[] );
int main()
{
int i;
Vertex TopOrder[MaxVertexNum];
LGraph G = ReadG();
if ( TopSort(G, TopOrder)==true )
for ( i=0; i<G->Nv; i++ )
printf("%d ", TopOrder[i]);
else
printf("ERROR");
printf("\n");
return 0;
}
/* Your function will be put here */
Sample Input 1 (for the graph shown in the figure):
5 7
1 0
4 3
2 1
2 0
3 2
4 1
4 2
Sample Output 1:
4 3 2 1 0
Sample Input 2 (for the graph shown in the figure):
5 8
0 3
1 0
4 3
2 1
2 0
3 2
4 1
4 2
Sample Output 2:
ERROR
代码如下:
bool TopSort(LGraph Graph,Vertex TopOrder[])
{
int counter=0;
int Indegree[MaxVertexNum];
int queue[MaxVertexNum];
int head=0,tail=0;
PtrToAdjVNode node;
int i=0,j=0;
for(i=0;i<MaxVertexNum;i++){
TopOrder[i]=0;
Indegree[i]=0;
queue[i]=-1;
}
for(i=0;i<Graph->Nv;i++){
node=Graph->G[i].FirstEdge;
while(node!=NULL){
Indegree[node->AdjV]++;
node=node->Next;
}
}
for(i=0;i<Graph->Nv;i++){
if(Indegree[i]==0)
queue[tail++]=i;
}
while(head!=tail){
j=queue[head++];
TopOrder[counter++]=j;
node=Graph->G[j].FirstEdge;
while(node!=NULL){
Indegree[node->AdjV]--;
if(Indegree[node->AdjV]==0){
queue[tail++]=node->AdjV;}
node=node->Next;
}
}
if(counter!=Graph->Nv)
return false;
return true;
}