利用sklearn库构建SVM分类器十分简单,因为这个库已经封装好了,只用调用相应的函数即可。
# -*- coding: utf-8 -*- """ Created on Fri Nov 23 18:44:37 2018 @author: 13260 """ import os import numpy as np import matplotlib.pyplot as plt from itertools import cycle from sklearn import svm, metrics, preprocessing from sklearn.metrics import roc_curve, auc, classification_report from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.multiclass import OneVsRestClassifier from sklearn.externals import joblib from scipy import interp # 加载图像特征及标签 ''' def read_features(filedir): file_list = os.listdir(filedir) X = [] tmp_y = os.listdir("F:/shiyan/TensorFlow/retrain/data/train") # print(len(y)) y = [] for file in file_list: tmp_file = filedir + "/" + file tmp = np.loadtxt(tmp_file,dtype=str) # np格式转换 feature = tmp.astype(np.float) X.append(feature) old_filename = file[:-3].split("_")