这道题就是一道简单的二维dp,转移方程为dp[i][j] = min(dp[i-a[j]][j-1]+1, dp[i][j]);//i>a[j]时
dp[i][j] = min(dp[i][j], dp[i][j-1]);
其中dp[i][j]表示用前j张邮票凑成数额为i的最小邮票数目,附上AC代码:
#include<bits/stdc++.h>
using namespace std;
int dp[110][25];
int a[25];
int main()
{
int m, n;
while(~scanf("%d%d", &m, &n))
{
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for(int i = 1; i <= m; i++)
for(int j = 1; j <= n; j++)
dp[i][j] = 1e9;
for(int i = 1; i <= n; i++)
dp[a[i]][i] = 1;
for(int i = 1; i <= m; i++)
{
for(int j = 2; j <= n; j++)
{
//printf("aaa\n");
if(i > a[j])
dp[i][j] = min(dp[i-a[j]][j-1]+1, dp[i][j]);
dp[i][j] = min(dp[i][j], dp[i][j-1]);
//printf("dp[%d][%d]:%d\n", i, j, dp[i][j]);
}
}
if(dp[m][n] == 1e9)
printf("0\n");
else
printf("%d\n", dp[m][n]);
}
return 0;
}