leetcode之validate-binary-search-tree(判断二叉树是否是BST搜索二叉树)
题目
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
confused what"{1,#,2,3}"means? > read more on how binary tree is serialized on OJ.
OJ’s Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where ‘#’ signifies a path terminator where no node exists below.
Here’s an example:
The above binary tree is serialized as"{1,2,3,#,#,4,#,#,5}".
题意
给定一个二叉树,判断这个二叉树是否是BST搜索二叉树。
解题思路
BST 左子树比根节点小,右子树比根节点大。直接将该二叉树进行中序遍历,输出数组,判断是否递增。
C++实现代码
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode *root) {
vector<int > v;
inorder(root,v);
int num = v.size();
/////判断v是不是递增//////
for(int i=1;i<num;i++){
if(v[i-1]>=v[i]){
return false;
}
}
return true;
};
void inorder(TreeNode* root,vector<int> &v){
if(root == nullptr){
return ;
}
inorder(root->left,v);
v.push_back(root->val);
inorder(root->right,v);
}
};